header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IN VIVO DETERMINATION OF CONTACT STRESSES FOR SUBJECTS IMPLANTED WITH A POSTERIOR STABILIZED TKA



Abstract

At present, contact stress analyses of TKA involve in vitro experimental testing. The objective of this project was to develop a parametric mathematical model that determines in vivo contact stresses for subjects implanted with a TKA, under in vivo, dynamic conditions. It is hypothesized that the results from this model will be more representative of in vivo conditions, thus leading to more accurate prediction of TKA bearing surface stresses.

In vivo kinematics were determined for ten subjects implanted with a posterior stabilized TKA during gait and a deep knee bend under fluoroscopic surveillance. Three-dimensional contact positions, determined between the femoral component and the polyethylene insert, were entered into a complicated mathematical model to determine bearing surface forces. In vivo kinematics and kinetics were entered into a deformation model to predict in vivo contact areas between the medial and lateral condyles and tibial insert. The orientation of the femoral and tibial components, the predicted in vivo contact areas, and vectoral information of soft-tissue derived from MRI images were then entered into a mathematical model that predicted in vivo contact stresses between the femoral component and the tibial insert.

This is the first computational model that utilizes fluoroscopy, MRI, deformation characteristics and Kane’s theory of Dynamics to predict in vivo contact stresses. Although previous models have not been validated, this model was validated by comparing the predicted foot/ ground force with the experimentally derived force. This study demonstrates that patellar motion influences forces throughout the lower extremity. The in vivo contact stress values predicted in this initial study were less than the yield strength of polyethylene.

Correspondence should be addressed to Richard Komistek, PhD, International Society for Technology in Arthroplasty, PO Box 6564, Auburn, CA 95604, USA. E-mail: ista@pacbell.net