header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BIOCOMPATIBLE PHOSPHOLIPID POLYMER GRAFTING ONTO ARTICULATING SURFACE OF THE ARTIFICIAL HIP JOINT PREVENTS ASEPTIC LOOSENING. NANO-TECHNOLOGY TO PROLONG THE LONGEVITY OF THE ARTIFICIAL HIP JOINT;



Abstract

Despite improvements in techniques and materials, aseptic loosening of artificial hip joints remains as the most serious problem. This study investigated mechanical and biological effects of biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer on prevention of aseptic loosening.

To examine mechanical effects of MPC grafting, we performed hip simulator tests (3million cycles) using cross-linked polyethylene (CL-PE) liners with or without nano-grafting of MPC onto articulating surface (MPC liner/CL-PE liner) and PE liner against CoCrMo heads. To examine biological responses of macrophages and osteoblasts, we prepared MPC nanoparticles (500nm). Using in vitro/vivo murine particle-induced osteolysis model, we examined biological effects of MPC nanoparticles on osteoclastogenesis.

The friction torque was about 90% lower in MPC liners than control liners. Total amounts of wear produced from MPC liner was about 1/5and 1/30 of those from CL-PE and PE liners, respectively. Three-dimensional analysis and SEM analysis of MPC liners revealed no or little wear. The effect of MPC nanografting was maintained even after the test, because XPS analysis confirmed the remainder of specific spectra of MPC on the liner surface. When nanoparticles were exposed to cultured mouse macrophages, MPC nano particles were hardly phagocytosed by macrophages and did not enhance the concentration of bone resorptive cytokines and PGE2. Furthermore, culture medium of macrophages exposed to MPC nanoparticles did not induce RANKL expression in osteoblasts and osteoclastogenesis from bone marrow cells. In vivo murine osteolysis model, particle-induced bone resorption was hardly observed in mice implanted MPC nanoparticles.

Some medical devices grafted MPC onto itssurface have been already used under authorization of the FDA. This study demonstrated that MPC grafting markedly decreases wear production. In addition, even if wear particles are produced, they are biologically inert in respect to phagocytosis by macrophages and subsequent resorptive actions, suggesting an epochal improvement of artificial hip joints preventing aseptic loosening.

Correspondence should be addressed to Richard Komistek, PhD, International Society for Technology in Arthroplasty, PO Box 6564, Auburn, CA 95604, USA. E-mail: ista@pacbell.net