header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IN-VIVO FLUOROSCOPIC ANALYSIS OF THE SAGITTAL PLANE KINEMATICS OF A PATELLO-FEMORAL ARTHROPLASTY



Abstract

Functional outcome after patellofemoral joint replacement (PFA) for osteoarthritis remains inconsistent. It is believed that functional outcome for joint replacement is dependent upon postoperative joint kinematics. Minimal disruption of the native joint, as in PFA, should produce more normal kinematics and improved outcome. No previous studies have examined joint kinematics after isolated PFA.

Aim: To investigate the sagittal plane kinematics of patellofemoral replacement and compare with the normal knee.

Twelve patients who had undergone successful PFA at least two years previously were recruited. Patients performed flexion/extension against gravity, and a step up. Video fluoroscopy of these activities was used to obtain the Patellar Tendon Angle (PTA), the angle between the long axis of the tibia and the patella tendon, as a function of knee flexion. This is a previously validated method of assessing sagittal plane kinematics of a knee joint. The kinematic profile of the PFA joints was compared to the profiles for fourteen normal knees.

Overall, the kinematic plot obtained for PFA reflected similar trends to that for normal knees; but the PTA was slightly but significantly increased throughout the entire range of flexion (two degrees). This is equivalent to an average displacement of the lower pole of the patella of 1.5mm.

Sagittal plane knee kinematics after PFA are much more normal than after TKR and this should give improved functional outcome. The observed increase in PTA through range may result from increased patella thickness or a shallow trochlear groove and may influence patellofemoral contact forces.

Correspondence should be addressed to Richard Komistek, PhD, International Society for Technology in Arthroplasty, PO Box 6564, Auburn, CA 95604, USA. E-mail: ista@pacbell.net