header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

EFFECT OF CROSS-SECTIONAL STEM SHAPE ON TORSIONAL STABILITY OF CEMENTED IMPLANTS UNDER CYCLIC LOADS



Abstract

Purpose: To compare the torsional stability provided by five implant stems with different cross-sectional geometries under cyclic loading.

Methods: Cemented stems with five different cross-sectional shapes – circular, oval, triangular, rectangular with rounded edges (round rectangular), and rectangular with sharp edges (sharp rectangular) – were custom machined from stainless steel. Stem dimensions were selected to fit within the humeral canal (based on a 6mm x 8mm dimensioning scheme) and shapes were based on commercially available-designs. Seven specimens of each stem shape were tested. ||The stems were potted in square aluminum tubes using bone cement, and allowed to cure for 24 hours prior to testing. A materials testing machine and a custom designed loading fixture were used to apply torsion to the stems. A sine wave loading pattern was applied until ultimate failure (5° of stem rotation) was reached. This loading pattern had a lower bound of 0.9Nm and an upper bound that started at 4.5Nm and was increased in increments of 2.25Nm every 1500 cycles. The load was cycled at 2Hz. Statistical analyses on both the number of cycles and torque to failure were performed using one-way ANOVAs followed by post-hoc Student-Newman-Keuls (SNK) tests (p< 0.05).

Results: Overall, ANOVAs showed an effect of shape on the number of cycles (p< 0.0001) and torque to failure (p< 0.001). SNK tests revealed the sharp rectangular stem provided the greatest resistance to torque (p-cycles< 0.001; p-torque< 0.001) compared to all other stems. Other significant differences resulted in the following ranking of the shapes: sharp rectangular, round rectangular, triangular, and circular = oval.

Conclusions: The results of this study agree with static testing previously conducted on the same set of stem shapes. Although the sizes of the stems were chosen to roughly replicate upper limb implants, these results may be extrapolated to larger stems such as for the hip or knee. To improve implant longevity, it is important that the best fixation possible be obtained through all available avenues, including improved cementing techniques, and optimal implant designs. An alteration in implant stem shape may assist in achieving this goal.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada