header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PREDICTION OF SCOLIOSIS PROGRESSION IN TIME SERIES USING ARTIFICIAL INTELLIGENCE TECHNIQUES



Abstract

The pathogenesis of scoliosis progression remains poorly understood. Seventy-two subject data sets, consisting of four successive values of Cobb-angle and lateral deviations at apices for six and twelve-months intervals in the coronal plane, were used to train and test an artificial neural network (ANN) to predict spinal deformity progression. The accuracies of the trained ANN (3-4-1) for training and testing data were within 3.64° (±2.58°) and 4.40° (±1.86°) of Cobb angles, and within 3.59 (±3.96) mm and 3.98 (±3.41) mm of lateral deviations, respectively. The adapted technique for predicting the scoliosis deformity progression has promising clinical applications.

Scoliosis is a common and poorly understood three-dimensional spinal deformity. The study purpose is to predict scoliosis progression at six and twelve months intervals in the future using successive spinal indices with an artificial neural network (ANN).

The adapted ANN technique enables earlier detection of scoliosis progression with high accuracy. Improved prediction of scoliosis progression will impact bracing or surgical treatment decisions, and may decrease hazardous X-ray exposure.

Seventy-two data sets from adolescent idiopathic scoliosis subjects recruited at the Alberta Children’s Hospital were used in this study. Data sets composed of four successive values of Cobb angles and lateral deviations at apices for six and twelvemonth intervals (coronal plane) were extracted to train and test a specific ANN for predicting scoliosis progression.

Progression patterns in Cobb angles (n = 10) and lateral deviations (n = 8) were successfully identified. The accuracies of the trained ANN (3-4-1) with the training and testing data sets were 3.64° (±2.58°) and 4.40° (±1.86°) of Cobb angles, 3.59 (±3.96) mm and 3.98 (±3.41) mm of lateral deviations, respectively. These results are in close agreement with those using cubic spline extrapolation techniques (3.49° ± 1.85° and 3.31 ± 4.22 mm) and adaptive neuro-fuzzy inference system (3.92° ±3.53° and 3.37 ±3.95 mm) for the same testing data.

ANN can be a promising technique for prediction of scoliosis progression with substantial improvements in accuracy over current techniques, leading to potentially important implications for scoliosis monitoring and treatment decisions.

Funding: AHFMR, CIHR, Fraternal Order of Eagles, NSERC, GEOIDE.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada