header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

BONE THERMAL NECROSIS AND CEMENT PENETRATION IN FEMORAL HEAD RESURFACING



Abstract

3-D finite element model of a resurfaced femoral head was composed. Five configurations of cement layer were analyzed and the transient heat transfer analysis during cement polymerization was performed. Peak temperature at the bone-cement interface temperature was lower than 40 oC when there was no or 1.5 mm cement penetration but reached 54 oC and 74 oC with 6 mm penetration and 6 mm penetration plus a cement –filled cyst of 1 cm3, respectively. With deep cement penetration, and a large cement-filled cyst, the peak temperatures exceeded bone thermal osteonecrosis at 55 oC.

To evaluate using a finite element analysis model, the possibility of bone thermal necrosis secondary to cement in resurfacing arthroplasty of the hip.

With deep cement penetration, and the presence of a large cement-filled cyst, the peak temperatures were in the range of bone thermal osteonecrosis 55 oC.

Cementing technique in resurfacing arthroplasty should strive to strike a balance between fixation and avoiding bone thermal necrosis by excessive cement penetration. This information could explain why femoral head cysts > 1cm are a risk factor for femoral loosening after resurfacing arthroplasty and excessive cement penetration could lead to femoral neck fracture.

3-D finite element model of a hemispherical resurfaced femoral head was composed of a metal shell with a diameter of 46 mm. Five configurations of cement layer were analyzed a) no penetration into the bone, b) 1.5 mm penetration, c) 6 mm penetration, d) 6 mm penetration and a 1 cm3 cement filled cyst, and e) 6 mm penetration and 2 cm3 cement-filled cyst. The transient heat transfer analysis during cement polymerization was performed in a series of time steps. The temperature within the bone and cement was lower than 40 oC when there was no or 1.5 mm cement penetration into the femoral head. In contrast, the peak temperature at the bone-cement interface reached 54 oC and 74 oC and 63 oC with 6 mm penetration and 6 mm penetration plus a cement –filled cyst of 1 cm3, respectively.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada