header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

A NOVEL CLOVER-LEAF SHAPED INTERBODY DEVICE IN VITRO EXHIBITED HIGHER FAILURE LOAD, STRENGTH AND STIFFNESS THAN AN ELLIPTICAL DEVICE



Abstract

A biomechanical study assessing compressive failure load, strength and stiffness with three different interbody device shapes was performed in human cadaveric vertebrae. The custom-made interbody devices had similar cross-sectional areas and specimens were tested with 20% or 40% coverage of indentor to endplate area. Axial compressive load was applied at 0.2mm/s to a depth equivalent to 20% of the vertebral height. The clover-leaf shaped device resulted in significantly higher failure load, strength and stiffness over the elliptical and the kidney shaped devices for both areas of coverage. The clover-leaf shaped devices extended over stronger periphery regions of the endplates and resulted in stronger interface properties.

To determine if two novel interbody cage shapes, the kidney and the clover-leaf, are biomechanically superior to a standard elliptical shape of similar cross sectional area.

Uniaxial compression tests with unrestricted rotations were carried out on the superior endplates of forty-eight thoracolumbar (T9-L2) vertebrae with one of three shaped indentors covering 20% or 40% of the endplate area. Compressive load was applied using a servohydraulic testing machine at 0.2mm/s, to depth equivalent to 20% of the vertebral height. Failure load, strength and stiffness were compared.

The clover-leaf shaped indentors resulted in higher failure load (53% average increase), higher strength (67% average increase) and higher construct stiffness (43% average increase), and these results were significant (p< 0.05). Larger indentor coverage area of 40% also resulted in significantly higher failure loads over 20% coverage (75% average increase).

Current elliptical interbody devices are placed over the central region of the endplate, which is also the weakest. A clover-leaf shaped device extended over the stronger peripheral regions of the endplates and resulted in improved bone-implant interface properties. This implant if implemented in vivo could potentially reduce implant subsidence and lead to better long-term outcomes in osteoporotic patients.

The novel clover-leaf shaped indentor displayed superior bone-implant interface properties. Larger interbody devices should be used when possible to improve interface properties.

Implant subsidence in osteoporotic patients could be significantly reduced with a clover-leaf shaped device, leading to better long-term outcomes.

Funding: Funding from the Canadian Institutes for Health Research.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada