header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

CYCLIC LOADING OF ROTATOR CUFF REPAIRS: AN IN VITRO BIOMECHANICAL COMPARISON OF BIOABSORBABLE ANCHORS WITH TRANSOSSEOUS SUTURES.



Abstract

We compared the initial strength of two techniques for repair of rotator cuff tears. Eight paired cadaveric shoulders with a standardized supraspinatus defect were studied. A transosseous suture and anchor repair was conducted on each side. Specimens were tested under cyclic loading, while fixation was monitored with an optical tracking technique. Mode of failure, number of cycles and load to failure were measured for 50% (5 mm) and 100% (10 mm) loss of repair. Anchors provide improved repair strength at 50% repair loss, in comparison to sutures (p< 0.05). Strength was unaffected by bone mineral density, age and gender.

The purpose of this study was to compare the initial strength of two rotator cuff repair techniques.

Repair strength with anchors was superior to sutures. Strength was unaffected by bone quality.

Anchors, enabling a quicker, less invasive arthroscopic repair, offer improved fixation over sutures, which are more time consuming and invasive.

Eight paired shoulders with a standardized supra-spinatus defect were randomized to anchor or suture repair, and subjected to cyclic loading. Repair migration was measured using a digital camera. Failure mode, cycles and load were measured for 50% and 100% loss of repair. Results were correlated with bone mineral density, age and gender.

The anchors failed at the anchor-tendon interface, whereas the sutures failed through the sutures. Mean values for 50% loss of repair were 205.6 ± 87.5 cycles and 43.8 ± 14.8 N for the sutures, and 1192.5 ± 251.7 cycles and 156.3 ± 19.9 N for the anchors (p< 0.05). The corresponding values for 100% loss of repair were 2457.5 ± 378.6 cycles and 293.8 ± 27.4 N for the sutures, and 2291.9 ± 332.9 cycles and 262.5 ± 28.0 N for the anchors (p> 0.05). These results did not correlate with bone quality.

This study has demonstrated that anchors provide improved repair strength, in comparison to sutures. This may be due to the relative less deformability of the anchors. Repair strength did not correlate with bone quality. This may be attributed to each repair failing primarily through the repair construct or at the anchor-tendon interface, and not through bone.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada