header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

NEUROMUSCULAR CONTROL DIFFERENCES IN MODERATE KNEE OSTEOARTHRITIS



Abstract

The objective of this study was to determine if abnormal neuromuscular patterns exist in individuals with knee Osteoarthritis compared to those with healthy knees. We collected surface electromyographic signals during preferred speed and fast walk conditions from seven muscles crossing the knee joint. We found differences between the two groups that could lead to differences in joint loading, with the OA group having higher coactivity between hamstrings and quadriceps during initial loading. Further investigating these differences is warranted in particular given the trend for lower external extensor moments for the OA group at the fast walking speed.

The purpose of this study was to compare neuromuscular control of knee joint motion during walking between those with moderate Osteoarthritis (OA) and those with healthy knees (CON).

Moderate OA neuromuscular control patterns differed from those with healthy knees.

Detecting neuromuscular alteration associated with mild to moderate knee OA is important to direct therapeutic strategies aimed to slow down or possibly reverse disease progression.

Surface electromyographic (EMG) recordings were collected from seven muscles crossing the knee joint of CON (n=7) and those with moderate OA (n=4) during preferred speed and a fast-paced walks. A pattern recognition technique was applied to the EMG profiles. No differences (> 0.05) were reported between the two groups for spatial and temporal gait parameters or knee joint kinematics. Statistical differences were found (p< 0.05) in muscle activation patterns between the two groups and the differences were more prominent at the faster walking speed. The two vasti muscles had double peaks during stance and higher amplitudes at heel strike for the OA group. There was higher activity in the two hamstring muscles at heel contact and a burst of activity during late stance for the OA group.

The disproportionately higher knee flexor coactivity at heel strike may reflect a guarded response to pain, whereas the burst during weight transfer may reflect a stabilizing response as the knee moment changes from a flexor to an extensor moment. At normal walking speeds the neuromuscular control patterns were similar between groups, but differences were exaggerated when the system was stressed at higher speed.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada