header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

LIGAMENTOUS BALANCING IN TOTAL KNEE ARTHROPLASTY: AN IN-VITRO LOAD CELL ANALYSIS



Abstract

A load cell, capable of measuring medial and lateral loads independently, was used to evaluate current methods of ligamentous balancing in total knee arthroplasty. Ten cadaveric knees were randomized with the surgeons blinded or unblinded to the load cell’s output. Before ligament resection, there were differences between medial and lateral forces (p< 0.05). Balance improved in both groups following ligamentous releases. There was a trend for superior balance (medial-lateral compressive force) with load cell feedback provided: 30°(11.1 vs. 44.4N), 60°(7.1 vs. 36.9N), and 90°(3.0 vs. 8.7N). Further in-vivo studies with this device may improve load transfer and the longevity of TKA.

The purpose of this study was to employ a tibial load cell to assess current methods of ligamentous balance during total knee arthroplasty, and to determine whether the load cell can improve load distribution between the medial and lateral compartments.

Current methods achieve imperfect load balance, however this may be improved with the assistance of an intra-operative load cell.

Intra-operative assessment and quantification of load balance with a load cell may improve the longevity of TKA.

TKA was performed on five pairs of cadaveric knees which were randomly assigned into one of two groups based upon whether the surgeons were blinded or unblinded to the load cell’s output. A validated tibial load cell, capable of measuring medial and lateral loads independently, was inserted. Compartment forces were recorded at discrete flexion angles prior to ligamentous balancing and again after soft tissue balancing with final components cemented into position.

Initially, there were significant differences between the loads in the medial and lateral compartments (p< 0.05). With soft tissue release, there was improved balance. There was a trend for superior balance (medial minus lateral compressive force) in the unblinded group at 30°: 11.1N unblinded vs. 44.4N blinded, 60°: 7.1 vs. 36.9N, and 90°: 3.0 vs. 8.7N.

Failure to achieve ligamentous balance results in instability and unequal load distribution. Current balancing techniques are not perfect, but appear to be improved with the use of the load cell. Further in-vitro and in-vivo studies are needed to improve the load distribution following TKA.

Correspondence should be addressed to Cynthia Vezina, Communications Manager, COA, 4150-360 Ste. Catherine St. West, Westmount, QC H3Z 2Y5, Canada