header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

COMPUTER ASSISTED SIX AXES DEFORMITY CORRECTION AND LIMB RECONSTRUCTION WITH TAYLOR SPATIAL FRAME.



Abstract

The aim of our study was to assess the efficacy and complications of treatment of limb deformities using six axes deformity analysis and the Taylor TM Spatial Frame [TSF]

Between January 1997 and March 2000, we treated 75 lower limbs in 66 patients with deformities. Patients were divided into four groups. The groups were Blount’s disease, congenital deformities, traumatic deformities, and a miscellaneous group. The data was prospectively collected. This was a consecutive series of the first 66 patients treated at our institution with the TSF. Deformity correction using the TSF is done with the aid of computer software.

The mean age of the 66 patients was 18.7 years (range 0.5 to 72 years). The average frame time was 18.6 weeks (range 9 to 49 weeks). There was shortening present in 31 limbs with a mean of 18.6 mm (range 5 to 50 mm). Deformity correction with distraction osteogenesis was begun 7 days after the osteotomy. The mean length of time until correction was 6.7 weeks (range 3 to 13 weeks). There were a total of 10 complications (13.3%) in the series.

27 tibiae in 23 patients underwent correction with the TSF for Blount’s disease. There were 11 infantile and 16 adolescent forms. Correction of congenital deformity was performed in 20 tibiae and 8 femurs in 18 patients. There were 9 males and 9 females. There were 13 male and 8 female patients with traumatic lower limb injuries. There were 11 malunions and 10 nonunions (including 2 infected nonunions) that were corrected with the TSF.

The TaylorTM Spatial Frame is an effective technique in treating deformity. Angulation, translation, shortening and rotation can be corrected simultaneously.

Based on our results, we conclude that the TSF allows safe, gradual correction that is accurate and well tolerated.

The abstracts were prepared by Mr Tim Briggs. (Editoral Secretary 2003/4) Correspondence should be addressed to him at Lane Farm, Chapel Lane, Totternhoe, Dunstable, Bedfordshire LU6 2BZ, United Kingdom