header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

COMPARISON OF LEG ALIGNMENT FOLLOWING COMPUTER ASSISTED VERSUS CONVENTIONAL TKJR



Abstract

Inaccurate positioning of components results in suboptimal knee function, implant wear and early loosening of the prosthesis. Small differences in varus/valgus angulation have been shown not to affect outcome, but, when the prosthesis is more than 3 degrees malaligned from neutral, premature failure rates rise.

Accurate alignment requires proper orientation in the placement of the cutting guides and computer-aided navigation systems have now been developed with the aim of improving this.

We compared the post-operative leg alignment following computer assisted (Orthopilot) versus conventional (IB2 with extramedullary tibial and intramedullary femoral jigs) methods of TKJR using weight-bearing long leg radiographs.

This was a study of 91 consecutive TKJRs (51 IB2s and 40 Orthopilot Search Evolution knees) performed in 70 patients.

A single experienced knee surgeon carried out all these procedures. All these patients had weight-bearing long leg alignment films taken by a single experienced radiographer.

The anatomical centres of ankle, knee and hip were then marked on each film and the tibia femoral angles drawn. Two separate blinded observers then measured the angles of malalignment.

Observer A’s results show that 95% of the Orthopilot knees were within 3 degrees of varus or valgus from neutral. Only 74.47% of the IB2 group were within this range (p=0.011).

For Observer B 87.5% of Orthopilot knees and 70.21% of IB2s were within the range (p=0.052). When we group these finding we see that an average of 91.25% of the Orthopilot and 72.34% of the IB2 knees are within the range (p=0.025).

When the interobserver figures for each group were compared no significant difference was found.

Conclusion: Our results show a significant improvement in postoperative alignment of TKJRs by using the computer-aided navigation system and it should follow that the long-term survival of the prosthesis would be extended.

The abstracts were prepared by Mr Tim Briggs. (Editoral Secretary 2003/4) Correspondence should be addressed to him at Lane Farm, Chapel Lane, Totternhoe, Dunstable, Bedfordshire LU6 2BZ, United Kingdom