header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

NANOMETRE SCALE SURFACE TOPOGRAPHY OF ORTHOPAEDIC METALS INFLUENCES OSTEOBLAST ADHESION AND MORPHOLOGY



Abstract

Introduction: Several recent studies have highlighted the influence of topographical features on the response of cells to biomaterial surfaces, both in terms of their adhesion, morphology and gene expression. Initial cell adhesion events are believed to be pivotal in dictating subsequent host response to implant materials and therefore understanding the mechansims that regulate these events is fundemental to the design and engineering of the next generation of biomaterials. In our studies we evaluated the adhesion associated events of osteoblasts on four orthopaedic metals, each produced to the same surface finnish. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to determine the nanometre scale topography and immunofluorescence microscopy and image analysis performed to evaluate cell morphology.

Methods: Vitallium, titanium grade 2 (Ti2), Ti6Al4V and TM2F discs were prepared by Stryker, machined and finished to 1 micron. SEM and AFM were then used to analyse surface topography. Rat primary osteoblasts were then seeded at low density onto the metal discs and allowed to adhere and spread for 24 hours. The cells where fixed and focal adhesions stained with an anti-vinculin Mab. The actin cytoskeleton was counterstained with TRITC phalloidin and nuclei stained with DAPI. Images where captured on both a standard epiflourescence microscope and a confocal microscope. Image analysis was performed using ScionImageTM to determine cell area, major X/Y axis lengths and numbers of focal adhesions per cell.

Results: Gross observation of all samples revealed a perfectly smooth and flat surface. SEM and AFM analysis showed that at the nanometre scale each exhibited varying degrees of surface roughness. Vitallium was the smoothest with scratches a few nanometres deep running across the surface. In contrast Ti6Al4V, Ti2 and TM2F had increasing degrees of surface roughness, each with details that measured up to a few microns in height.

We measured 1: the area occupied by a cell and 2: the number of focal adhesions per cell. The largest values of osteoblastic cell area were seen with the smoother vitallium surface. In contrast, samples with more numerous and larger surface features resulted in the osteoblasts covering a smaller area and being confined by topographical elements (Ti2> TM2F> Ti6Al4V). In terms of adhesion, there were generally more focal adhesions per cell on rougher surfaces (Ti6Al4V> TM2F> Vitallium> Ti2).

Conclusions: The different nanometre scale features introduced through the manufacturing process of different orthopaedic implant materials influence the adhesion and cell morphology of osteoblast cells within the first 24 hours of contact. This may have consequences for later differentiation and function of these cells.

Correspondence should be addressed to Mr Carlos Wigderowitz, Honorary Secretary BORS, University Dept of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School, Dundee DD1 9SY.