header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

17-BETA ESTRADIOL SAVES THE BONE MARROW DERIVED OSTEOGENIC STEM CELLS FROM OXIDANT INDUCED DEATH



Abstract

Introduction: Oxidative stress occurs when reactive oxygen species (ROS) are produced faster than they can be removed by cellular defence mechanisms contributing to ageing, many chronic diseases, such as atherosclerosis, RA, Parkinson and Alzheimer’s disease and skeletal pathologies. Here we address the impact of ROS on the viability of early osteogenic precursors in the bone marrow and study the influence of estrogen on this interaction. Cells have a number of mechanisms to protect themselves from ROS, which are constantly being formed in the cell through normal metabolic pathways, such as Vitamin E, C and estrogen. Estrogen has been shown to prevent intracellular accumulation of peroxide and to attenuate oxidant-induced death of neuronal and endothelial cells. In addition, it contributes significantly to bone turnover and relieves postmenopausal symptoms. This study has focused on the potential anti-oxidant properties of estrogen against oxidative on bone marrow stromal cells. stress induced by H2O2

Methods: Primary bone marrow stromal cells were pre-treated with several different doses between 10−6M – 10−8M of estrogen prior to H2O2 administration at 0.08–0.4 mM 30% (v/v) for 2–24h. The cellular production of ROS was determined by using the free radical indicator DCFH-DA. Apoptosis was determined by morphological criteria.

Results: H2O2 induced an increase in apoptosis of osteoprogenitor cells (p< 0.05). Determination of apoptosis and cell number by nuclear staining, indicated that pre-treatment of bone marrow stromal cells with 17-beta estradiol reduced the apoptotic response induced by H2O2 (p< 0.05) and restored cell number to control levels. In order to test the anti-oxidant activity of estrogen, the dye DCFH-DA was introduced in a cell free system in the presence or absence of 17-beta estradiol and H2O2. The same experiment was repeated in the presence of bone marrow stromal cells. H2O2 increased both intracellularly and extracellularly oxidant activity and estradiol has the capacity of modifying this activity both inside and outside the cell.

Discussion: These data demonstrate the ability of estrogen, used at physiological doses, to block oxidant-induced apoptosis of osteoprogenitor cells. Estrogen appears to reduce the generation of ROS in these cells. These data could have important implications on the maintenance of osteogenic stem cells during fractures, ageing and disease.

Correspondence should be addressed to Mr Carlos Wigderowitz, Honorary Secretary BORS, University Dept of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School, Dundee DD1 9SY.