header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IN-VIVO KINEMATICS OF PS AND CR KNEES AT KNOWN POSTERIOR SLOPES OF THE TIBIAL COMPONENT

7th Congress of the European Federation of National Associations of Orthopaedics and Traumatology, Lisbon - 4-7 June, 2005



Abstract

Tibial component loosening continues to be the most common mode of TKA failure. A debate persists on the dependence of mobilisation of this component on the equilibrium between mechanical load transfer and counterbalancing bone resistance. The aim of the present work is to study the in-vivo kinematics of TKA and to relate it with the degree of posterior slope with which the tibial component was implanted for two prosthesis designs with congruent polyethylene insert.

Twenty-three patients with osteoarthritis of the knee had TKA using a cemented prosthesis (OPTETRAK, Exactech). A cruciate retaining (CR, 10 knees) or a posterior stabilized (PS, 13 knees) implant was randomly assigned at operation. Standard pre- and post-operative antero-posterior and lateral roentgenograms of the knee were taken. Fluoroscopic analysis was performed after at least 18 and 7 months after surgery for the CR and the PS group, respectively. Patients performed stair ascending, chair rising-sitting and step up-down motor tasks. Articular contacts were assumed as the two points on the medial and lateral femoral prosthetic condyles closest to the tibial component base-plate. The spine-cam distance was calculated as the minimum distance between corresponding surfaces.

Only small differences in the position of the contacts over knee flexion angles were found among the motor tasks and between the two TKA designs. An overall posterior location of the tibio-femoral contact points was found at the medial and lateral compartments over all motor tasks, a little more pronounced for the PS patients. Statistically significant correlation over the three motor tasks analysed was found between posterior position of the tibio-femoral medial contact in maximum knee flexion and the post-operative tibial posterior slope. This is true for the PS and for the aggregated groups. Although no statistically significant, a general trend is observed of higher degree of flexion at which the cam contacts the spine as the post-operative posterior slopes increases: a 35 higher knee flexion angle for a tibial component implanted with a 5 of posterior slope. Generally, even when the correlations were statistically significant the correlation coefficients were always lower than 0.4.

The present work reports combined measurements of post-operative posterior slope and full in-vivo relative motion of the components in both CR and PS TKAs. General trends were found between posterior slope of the tibial component and positions of the tibio-femoral contacts, but a statistically significant correlation was found only for the tibio-femoral medial contact in maximum knee flexion in the PS and in the aggregated. General trends were found between posterior slope of the tibial component and degree of flexion at which the cam starts to be in contact with the spine. The nearly standard antero-posterior translation of the tibio-femoral contacts can be bigger in flatter polyethylene inserts.

Theses abstracts were prepared by Professor Roger Lemaire. Correspondence should be addressed to EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.