header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

ASSESSMENT OF A SYNTHETIC HYDROXYAPATITE GRAFT EXPANDER IN IMPACTION GRAFTING REVISION HIP ARTHROPLASTY

7th Congress of the European Federation of National Associations of Orthopaedics and Traumatology, Lisbon - 4-7 June, 2005



Abstract

Impaction grafting procedures have found a widespread role in revision hip arthroplasty. Synthetic graft expanders have recently been introduced, but the optimal ratio of expander to allograft is unknown.

We performed a series of in vitro experiments to investigate the optimal ratio for one commercially available porous hydroxyapatite material (IG-Pore, ApaT-ech Ltd). IG-Pore was mixed with fresh frozen human allograft chips from osteoarthritic femoral heads and with blood. Graft was impacted into fibre-glass femoral models (Sawbones Europe) with a similar biomechanical profile to human bone, and Exeter hip prostheses (Stryker Howmedica Ltd) were cemented in place. Each model was loaded using an Instron servohydraulic materials testing machine for 18000 cycles. The magnitude and frequency of the loading cycle was based on physiologically measured values. Four test groups with 0%, 50%, 70% and 90% IG-Pore were used, with eight femora in each group.

Tantalum marker beads were attached to the prosthesis, the femoral model and the cement mantle, and radio-stereometric analysis (RSA) was performed pre- and post- loading to determine migration and rotation of the prosthesis in each axis. Pre-loading films were repeated in sixteen cases for precision measurements, and twelve specimens had delayed post-loading films performed to measure any re-expansion of the unloaded graft.

The primary end-point was RSA-measured subsidence of the prosthesis, defined as vertical movement of the tip. Median subsidence was 0.43mm, 0.31mm, 0.24mm and 0.13mm in the 0%, 50%, 70% and 90% IG-Pore groups respectively (P=0.034, Kruskal-Wallis test). The precision, given as the median absolute difference, was 0.0065mm.

All specimens showed a cyclical compression and expansion throughout the loading cycle. Specimens with a higher proportion of IG-Pore tended to be more resistant to this and the mean values for cyclical movement were 1.76 0.27mm, 1.65 0.21mm, 1.57 0.18 mm and 1.45 0.14mm for the 0%, 50%, 70% and 90% IG-Pore groups.

Higher proportions of IG-Pore appear to reduce subsidence in impaction grafting. Other issues such as the handling qualities of the graft and the biological effect of synthetic materials also need to be considered, however. A randomised clinical trial using RSA to evaluate a 50% IG-Pore/allograft mix in comparison to pure allograft is ongoing in our institution, and we hope that this will answer some of these questions definitively.

Theses abstracts were prepared by Professor Roger Lemaire. Correspondence should be addressed to EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.