header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IMPROVEMENT IN PRECISION AND REPRODUCIBILITY OF ACETABULAR CUP ORIENTATION IN TOTAL HIP ARTHROPLASTY WITH A NEW MECHANICAL GUIDE.

7th Congress of the European Federation of National Associations of Orthopaedics and Traumatology, Lisbon - 4-7 June, 2005



Abstract

Obtaining consistently an optimal cup orientation in THA is vital to obtain adequate head coverage and maximum impingement free range of motion and thus reduce the incidence of polyethylene wear, cup loosening, and dislocation rates associated with a limited range of motion. It is clear that THA instability, the most frequent cause of early failure, is a complex problem related to a wide range of causes. However cup orientation is one of the surgeon dependant potentially modifiable variables that continue to have an important influence due to the lack of reliable means of assuring an adequate orientation of the components, particularly the cup anteversion. Standard mechanical guides like Muller’s have been shown to be inaccurate and imprecise. Not surprisingly, dislocation is the most frequent short term complication after a THA. Acetabular cup orientation is a key factor determining joint stability and one of the most important ones under the surgeons’ control. An in vitro study was used to determine the precision, reproducibility and ease of use of a new mechanical guide in comparison to a standard mechanical guide Müllers. The new guide (Gravity Assisted Navigation System) consists of a simple to use navigation tool. It uses the constant direction of the force of gravity identified by two bulls’ eye levels providing real time intraoperative augmented reality thus controlling the orientation of the pelvis. Visualisation of the guide from a single perspective is enough to determine in real time, the orientation of the cup in abduction and anteversion. By using anatomic repairs within the pelvis its flexion/extension is taken into consideration. As part of an invitro study, 310 press-fit acetabular cups were impacted into a plastic model of a pelvis by 5 surgeons (Power 90%, Type I error 5%), The orientation obtained was measured with respect to a fixed reference of 15° of anteversion and 45° of abduction. Results: an average of 10.4° anteversion ,(Range 3°to 21°, Standard of Deviation 5.0°) for Müller s guide and of 0.4° anteversion (Range 1° to 3°, Standard of Deviation 0.7°) for the new guide and an average of −4.7° abduction (Range 7° to −11°, Standard of Deviation 2.3°) for Müllers guide and 0.3° abduction (Range 0° to 3°, Standard of Deviation 0.5°) for the new guide. The average time required for the orientation of the cups was similar with both guides. (6 seconds for Mullers guide and 5 seconds for the new guide) The precision and reproducibility of the cup orientation obtained with the new guide were significantly better than those obtained with Müllers guide (p< 0.00001). The results obtained with with the new mechanical guide are encouraging. The in vitro results are encouraging, the high precision and accuracy are comparable to results obtained by computer assisted navigation systems in similar studies.

Theses abstracts were prepared by Professor Roger Lemaire. Correspondence should be addressed to EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.