header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

LONG-TERM FEMORAL REMODELLING AROUND WELL-FIXED TOTAL HIP ARTHROPLASTY



Abstract

Introduction and Aims: Hip arthroplasty alters stress patterns in the proximal femur, thereby influencing femoral bone remodelling. The purpose of our study was to determine long-term skeletal response to wellfixed total hip arthroplasty.

Method: Seventy-two hips in 66 patients (mean age 57, range 25–72; 29 male, 37 female) were evaluated with standardised measurement protocol after arthroplasty with cemented Charnley (32 hips) or uncemented 5/8 coated AML stem (40 hips). Inclusion criteria: stable implants and complete radiographic record with minimum follow-up 15–20 years. 3159 measurements were made with power calipers and normalised for magnification.

Results: There was time dependent loss of proximal cortical thickness around both stems (AML greater than Charnley; proximal medial greater than proximal lateral cortex, (p< 0.05, all parameters). At 15–20 years, median proximal medial cortical thickness decreased by 12% for Charnley and 70% for AML stems. Median proximal lateral cortical thickness decreased by 9% for Charnley and 21% for AML stems. Median cortical thickness changes around the mid and distal prosthesis for both stems was mild, with a non-statistically significant trend (p> 0.05) towards more cortical loss (2–9%) around Charnley than AML stems (0–8%). The median intramedullary width increased by 1–10%, depending on level (no difference by prosthesis type, p> 0.05). Changes continued progressively over the entire observation period.

Conclusion: This paper provides the first detailed long-term information on the effect of well-functioning hip arthroplasty on femoral morphology in a large patient group. Morphologic changes are most pronounced in the proximal medial femur and vary by implant type. Also, the medullary canal widens around a replaced hip as the patient ages.

These abstracts were prepared by Editorial Secretary, George Sikorski. Correspondence should be addressed to Australian Orthopaedic Association, Ground Floor, The William Bland Centre, 229 Macquarie Street, Sydney, NSW 2000, Australia.

At least one of the authors is receiving or has received material benefits or support from a commercial source.