header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PORCINE-DERIVED SMALL INTESTINE SUBMUCOSA IS NOT A CELL-FREE BIOMATERIAL



Abstract

Introduction and Aims: Treatment of rotator cuff tendon tear presents a significant therapeutic challenge to surgeons. Porcine small intestinal submucosa (SIS) is a biomaterial approved by TGA and FDA for the repair of rotator cuff tendon tear. The aims of this study are to evaluate the safety and efficacy of SIS.

Method: SIS purchased from DePuy Johnson & Johnson was examined by histology and PCR technique. The material was also implanted into mice and rabbits for the evaluation of biological reaction and inflammatory response. Porcine immunoreceptor DAP12 gene was used to examine if the material contained porcine DNA.

Results: Fresh SIS membrane before implantation contains multiple layers of spindle-shaped cells mixed with a small population of round-shaped cells. Chloro-acetate esterase staining showed that the round-shaped cells are positive, indicating that they are mast cells. The tissue architecture of SIS mimics to tendon structure as evidenced by H& E staining. To further confirm if cells present in SIS material were porcine origin, nested PCR for the amplification of DAP12 gene was used. The result demonstrated that SIS membrane contain porcine DNA materials.

Conclusion: SIS contains porcine cells and nuclei acid, which contradicts with current views that SIS is a cell-free biomaterial. Although no foreign body reaction of SIS was observed, SIS implant may cause chronic inflammation. Further studies should be conducted to confirm the clinical efficacy of SIS implant.

These abstracts were prepared by Editorial Secretary, George Sikorski. Correspondence should be addressed to Australian Orthopaedic Association, Ground Floor, The William Bland Centre, 229 Macquarie Street, Sydney, NSW 2000, Australia.

At least one of the authors is receiving or has received material benefits or support from a commercial source.