header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

EARLY OUTCOMES FOR PRIMARY TOTAL HIP REPLACEMENT IN AUSTRALIA INCLUDING RESURFACING PROCEDURES



Abstract

Introduction and Aims: The use of resurfacing hip replacements has increased dramatically in recent years. The aim of this study was to compare the early results of this treatment with conventional cemented, cementless and hybrid primary total hip replacement in Australia.

Method: The data used for this report included all conventional primary total hip and resurfacing procedures, as well as any subsequent revisions of those procedures which had been undertaken and reported to the Australian Orthopaedic Association National Joint Replacement Registry (AOA NJRR) before 31 December 2002. Analysis included the determination of demographics, components used and method of fixation. Early revision rates and reasons for failure were also assessed. The AOA NJRR commenced data collection in September 1999 and has had national coverage since 2002, therefore any results reported at this stage are early outcomes.

Results: Almost 33,000 primary total hip replacements were recorded, of these 2130 were resurfacing procedures (6.5%). This proportion of resurfacing was consistent across states with the exceptions of Victoria (11%) and Tasmania (0.6%). Cementless hip replacement was the most common form of primary total hip replacement (41%) with hybrid (34%) and cemented (18.2 %) less common. There was marked state variation in the proportion of cemented and cementless fixation with NSW having a low proportion of cement fixation (4.5%). Early revision rates for cemented conventional primary total hip replacement are significantly less compared to cementless and hybrid hips (cemented v cementless) hazard ratio (adjusted for age and sex) 2.13; 95% CI (1.49, 3.05) p< 0.0001) (cemented v hybrid) hazard ratio (adjusted for age and sex) 1.94; 95% CI (1.37, 2.77) p=0.0002). There was no difference between cementless and hybrid hips. The most common reason for early revision was dislocation and the risk of this was related to head size with larger sizes showing a reduced risk. Although revisions per 100 observed component years were higher for resurfacing hip replacements than for conventional hips (1.73 v 1.18), this difference was not statistically significant. The principal reason for early failure of resurfacing hips was fracture.

Conclusion: The AOA NJRR has identified prosthesis specific differences in early outcomes and failure mechanisms following primary total hip replacement. Continued monitoring of existing and new prostheses will provide surgeons with independent quality information to assist in the selection of the most appropriate prostheses for particular clinical situations.

These abstracts were prepared by Editorial Secretary, George Sikorski. Correspondence should be addressed to Australian Orthopaedic Association, Ground Floor, The William Bland Centre, 229 Macquarie Street, Sydney, NSW 2000, Australia.

At least one of the authors is receiving or has received material benefits or support from a commercial source.