header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

STUDY OF THE DISTRACTION FORCES AND CONTACT PRESSURES OF THE ANKLE JOINT



Abstract

Aims: To identify the distraction forces and contact pressures of the ankle joint at two different joint positions during articulated ankle distraction.

Material and Methods: Four amputated lower limbs were collected from patients undergoing amputation for vascular disease and frozen at -70° C. The ankle joint of the specimens were normal. Before use the limbs were thawed at room temperature for 24 hours. The skin and subcutaneous tissues were removed. A Sheffield ring fixator consisting of a proximal tibial ring and a foot plate connected through three threaded bars and hinges aligned with ankle axis was mounted on the limb. Force transducers were placed in the threaded bars between the tibial ring and the foot plate on the lateral, medial and posterior aspect of the ankle joint to measure the ankle distraction forces. Once the ankle distraction forces have been measured an anterior ankle arthrotomy was performed to permit the insertion of Fuji pressure sensitive film within the ankle joint. The limb-fixator construct was mounted in a loading machine and axially loaded on the tibia. The ankle joint was distracted at 2 mm intervals to a maximum of 20 mm. Pressure sensitive film was introduced in the ankle joint at each distraction interval and the tibia was axially loaded at 350, 700, 1050 and 1400N (half to two times body weight).

Results: The forces necessary to distract the ankle joint are almost double in the medial side than the lateral side. With 10° of plantarflexion the forces necessary to distract the lateral side increase by about 10%.

We found the center of pressure of the ankle joint to be situated in the antero-medial quadrant, close to the center of the ankle joint. Distraction of the ankle joint by 5 mm eliminated any contact pressures at the ankle joint when the tibia was loaded up to 700N (one time body weight). When the joint was distracted by 10 mm no contact pressures were found in the ankle when loaded up to 1400N (two times body weight)

Conclusions: With the ankle in the plantigrade position the forces necessary to distract the ankle joint are double in the medial side when compared to the lateral side. Plantarflexion increases the forces necessary to distract the lateral aspect of the ankle. This finding may have clinical implications when distracting ankle joints with equinus deformities as this can increase the risk of damaging the lateral ankle ligaments leading to ankle instability. In our opinion equinus deformities should be corrected before the start of ankle joint distraction.

The center of pressure of the ankle joint is situated in the antero-medial quadrant. Distraction of 5 mm will eliminate ankle contact pressure up to one times body weight whereas distraction of 10 mm will eliminate contact pressures up to two times body weight.

Correspondence should be addressed to Carlos Widgerowitz, Honorary Secretary BORS, Division of Surgery and Oncology, Section of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Tort Centre, Dundee DD1 9SY, Scotland.