header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

IN VITRO ANALYSIS OF DIFFERENT GROWTH FACTORS WITH OSTEOINDUCTIVE PROPERTIES



Abstract

The search for bone substitutes has stimulated the study of growth factors with osteoinductive properties. Bone morphogenetic proteins (BMPs) have been shown to have a central role in endochondral and intramembranous bone formation and are thought to promote normal bone healing. Recent studies demonstrated that platelet-rich plasma (PRP) can provide several growth factors and stimulate osteogenesis. The aim of the present study was to analyse the in vitro effects of rhBMP-7 and PRP on phenotype and proliferation of cells from the site of non-union and from non-affected bone.

During the surgical treatment of seven cases of non-union, normal cancellous bone and tissue from the non-union site were harvested. Osteoblast-like cells and fibroblast-like cells were isolated and characterised. Mesenchymal cells were obtained from bone marrow of the same patients. Each cell type was incubated with rhBMP-7 and PRP at different concentrations. Proliferation rate and alkaline phosphatase activity were assessed at 3, 7, 15 and 30 days. Histochemical and immunohistochemical analyses were performed at 15 and 30 days.

The proliferation rate of osteoblast-like cells and mesenchymal cells wasalways higher than that of fibroblast-like cells from the non-union site. Growth factors induced mesenchymal cells to express osteoblast phenotype markers.

The results suggest that fibroblast-like cells from the site of non-union are poorly responsive to growth factors, even at highest stimulation. In surgical practice these data strongly suggest adding osteoblast-like cells and mesenchymal cells from non-affected sites at the non-union site to enhance the osteogenic response to growth factors.