header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

ENGINEERED CARTILAGE AND BONE FROM HUMAN MESENCHYMAL STEM CELLS CULTURED ON COLLAGEN MEMBRANES



Abstract

Bone marrow would represent a useful source of cells for skeletal tissue engineering. Marrow mesenchymal stem cells (MSC) can generate cartilage, bone and fat. The differentiation of this multipotent population into fibroblast, chondrocytes or osteoblasts can be inducted in vitro by the addiction of growth factor like bFGF, TGFA7, BMP-2.

In order to evaluate the possibility of inducing cell differentiation by cell-matrix interaction, we studied the in vitro behaviour of human MSC cultured on various scaffolds.

Bone marrow was obtained during surgery for pelvic fractures or hip arthroplasty. MSC were isolated by cell sorting (CD45/glycophorin A micromagnetic beads), expanded and characterised by FACSCalibur flow cytometry system (CD3, CD34, CD14, CD45, CD90 and CD105). Then cells were grown for 30 days on different scaffolds: type I and type II collagen, type I collagen + hydroxyapatite. Histochemical (alcian blue, safranin O, ALP and von Kossa stains), immunohistochemical (type I e II collagen, chondroitin sulphate, osteonectin), histomorphometric (area %) and spectrophotometric (cell proliferation, PG synthesis, ALP activity) analyses were performed after 15 and 30 days of culture.

Among the scaffolds tested in the present study, we observed a great variability in terms of MSC adhesion and proliferation. MSC grown on type II collagen differentiated into cells expressing chondrocytes markers (S100, collagen II, chondroitin-S). MSC grown on type I collagen + hydroxyapatite differentiated into osteoblast-like cells.

These data evidenced that MSC-matrix interaction can influence phenotype expression, cell adhesion and growth rate.

The abstracts were prepared by Ms Grazia Gliozzi. Correspondence should be addressed to her at the Italian Orthopaedic Research Society, Laboratory for Pathophysiology, Instituti Ortopedici Rizzoli, University of Bologna, Bologna, Italy.