header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

EFFECT OF KNEE NAVIGATION ON CORONAL ALIGNMENT AFTER TOTAL KNEE REPLACEMENT



Abstract

Introduction Component malalignment may result in failure in total knee arthroplasty (TKA). Knee navigation systems assist surgeons with intra-operative component positioning in TKA. We report on the effect of one system on the post-operative mechanical axis of the limb and coronal alignment of femoral and tibial components in TKA.

Methods In a prospective study of 47 total knee replacements we compared 24 cases using conventional techniques to 23 cases using the Stryker Knee Navigation System. Patient groups were matched for sex, weight and age. Postoperative antero-posterior radiographs of the whole leg were used to determine the mechanical axis of the limb and coronal position of the femoral and tibial components.

Results The mean post-operative mechanical axis of the limb in the navigated group was 1.3° varus (range 7° varus to 3.5° valgus, SD=2.6). In the control group the mean mechanical axis was 0.8° varus (range 9.5° varus to 10° valgus, SD=4.4). There was no significant difference in the mean mechanical axis between the groups (p=0.6). There was no significant difference in mean coronal alignment of the femoral (p=0.99) or tibial components, (p=0.98). The 95% confidence interval for the mechanical axis was narrower for the navigated group (2.4° varus to 0.2° varus) than for the control group (2.6° varus to 1.1° valgus). Using Levene’s test (not dependant on normal distribution) the variances for the mechanical axis of the limb, and the coronal alignment of the femoral and tibial components are all significantly less in the navigated than non-navigated groups (p=0.05, 0.001 and 0.004 respectively).

Conclusions This study showed no difference in the overall mean alignment of navigated versus non-navigated knees. However, a significant decrease in the variance of alignment seen with navigation means we are seeing fewer outlying results that may lead to a decrease in mechanical failure in TKA.

In relation to the conduct of this study, one or more of the authors is in receipt of a research grant from a non-commercial source.

The abstracts were prepared by Mr Jerzy Sikorski. Correspondence should be addressed to him at the Australian Orthopaedic Association, Ground Floor, William Bland Centre, 229 Macquarie Street, Sydney NSW 2000, Australia.