header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

DEVELOPMENT OF A PATELLO-FEMORAL GAIT WEAR SIMULATION



Abstract

Although complications associated with patello-femoral (PF) joint account for up to 50% of total knee replacement (TKR) revision procedures (Lee), the PF joint has been overlooked in wear simulations. The goal of this study was to develop an in vitro model to simulate patella wear in TKR’s. This report describes the concepts of an in vitro model for normal gait and the preliminary results of experimental validation.

The primary consideration in the development of the current model was modeling of the in vivo kinetics and kinematics. Since the in vivo kinetics are not well documented, the current model adapted a PF joint force pattern of gait measured one year postoperatively in a telemetric distal femoral replacement (Taylor et al). The maximum force was increased from 571N to 1780N (2.5xBody Weight) to compensate for muscle deficiency and to better reflect a maximum load representative of the in vivo situation. In vivo kinematics were adopted from measurements of Lafortune. Only the PF flexion was included in the model as a simplification of the complex patella motions. The phase relationship between the kinematic and kinetic waveforms was adjusted to replicate the in vivo situation. A 6-station knee simulator carried out the experimental validation with a test frequency of 1.5Hz. The test was intended to run for 5 million cycles, with CMM wear measurements (Muratoglu et al.) taken every million cycles. The preliminary measurements showed wear patterns in the tested patellae similar to retrieved patellae. Currently there are no standards for wear testing the PF joint. The current in vitro wear model presents a useful tool to critically assess the PF joint during gait. Future work should incorporate testing for adverse loading conditions, such as PF mal-alignment, rising from a chair or deep knee flexion.

The abstracts were prepared by Nico Verdonschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, University Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.