header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

O3252 MINIMISING CONTACT STRESSES AT THE ARTICULATING SURFACES IN METAL-ON-METAL HIP IMPLANTS



Abstract

Aims: The purpose of the present study was to investigate the contact mechanics at the articulating surfaces in metal-on-metal hip implants. Methods: A 28mm diameter Metasul (from Sulzer Orthopedics Ltd.) was analysed in the present study. Both the femoral head and the acetabular cup were manufactured from matching cobalt chromium alloy. The cobalt chromium alloy acetabular inlay was thermo-mechanically bonded to an ultra high molecular weight polyethylene (UHMWPE) backing, which was in turn inserted into a titanium shell with a snap-þt for cementless þxation. The radial clearance between the femoral head and the acetabular cup was 60μm. Finite element method (ABAQUS 6.2) was used to model the contact at the articulating surfaces between the femoral head and the acetabular cup, under a load of 3.2kN. Results: The average contact pressure at the bearing surfaces was found to be about 45MPa. This was considerably lower than 63MPa if the UHMWPE backing was replaced by cobalt chromium alloy. It was also interesting to compare the present result with the use of a larger femoral head or a reduced clearance. In order to match the average contact pressure of 45MPa, it was found to be necessary to increase the femoral head radius to 18mm for a given radial clearance of 60μm or to decrease the radial clearance to 35μm for a þxed femoral head radius of 14mm. Conclusions: The use of an UHMWPE backing underneath a cobalt chromium alloy cup signiþcantly reduces the contact stresses experienced at the articulating surfaces in metal-in-metal hip implants.

Theses abstracts were prepared by Professor Dr. Frantz Langlais. Correspondence should be addressed to him at EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.