header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

O2293 THE EFFECT OF DIFFERENT GEOMETRIC CONFIGURATIONS OF THE WEIL OSTEOTOMY ON PLANTAR PRESSURE IN AN IN VITRO CADAVER MODEL



Abstract

Aims: To evaluate the effect of different geometric conþgurations of the Weil osteotomy on the plantar pressures in a dynamic in vitro cadaver model. Methods: Ten specimens consisting of 5 matched pairs of cadaver lower extremities were tested. Each pair of specimens had an oblique Weil osteotomy with 5 mm shift performed on one side, and a standard (parallel) Weil osteotomy with 5 mm shift on the other. Then, a 4 mm slice resection, and metatarsal head resection were performed sequentially on each specimen. The plantar pressures were measured while cyclically loaded to 700 N at a frequency of 1 Hz with a F scan in-shoe sensor in intact specimens, and after each intervention. Results: This is the þrst study to demonstrate that the plantar translation of the metatarsal head occurring with a more oblique Weil osteotomy compared to a standard (parallel) Weil osteotomy did not signiþcantly increase plantar pressure in a dynamic in vitro cadaver model. Furthermore, the addition of a 4 mm slice resection did not signiþcantly unload the metatarsal head. Metatarsal head resection was required to signiþcantly unload the metatarsal head (p=0.02). Conclusions: The different geometric conþgurations of the Weil osteotomy did not signiþcantly alter plantar pressures in a dynamic cadaver model. Metatarsal head resection was required to signiþcantly unload the metatarsal head. Future studies of the effect of metatarsal osteotomies on plantar pressure should include evaluation in a dynamic in vitrocadaver model to account for all factors, which determine the distribution of plantar pressure.

Theses abstracts were prepared by Professor Dr. Frantz Langlais. Correspondence should be addressed to him at EFORT Central Office, Freihofstrasse 22, CH-8700 Küsnacht, Switzerland.