header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

CEMENTLESS MONOBLOC TANTALUM TIBIAL TRAY IN TOTAL KNEE ARTHROPLASTY



Abstract

The problem of early mechanical stability and late biological osseointegration of the tibial component is still a debated issue in total knee arthroplasty. We are among those authors that stress the necessity of cementing the tibial component to avoid the risk of failure due to the high torque stresses at this interface. In fact while on the femoral edge a good stability can be achieved even in uncemented implants, the stability of traditional tibial components is harder to obtain even in cemented implants.

To solve this problem it has been proposed to use additional devices such as screws, pegs or keels to better fix the tibial plateau. Tantalum monobloc tibial tray is a new answer to this problem. It consists in a cement-less tibial tray made of porous tantalum with monobloc polyethylene. Chemical, physical and biological properties of the raw tantalum are very similar to those of titanium. Porosity of the processed material is 80% (2–3 times compared to plasma spray, beads and fiber mesh coatings) and pores, which diameter is 650 mm, are fully interconnected in the whole bulk of the implant. This trabecular spongy structure, that is not a coating, allows the bone at the interface to deeply grow into the pores, and to achieve optimal stability. In addiction, the fusion of polyethylene into the tantalum mesh completely abolish the back side wear problem. With this technology is yet in use an acetabular component, with which we have a 5 years experience in 150 implants, and now is available a new tibial plateau; the first implant in Europe was performed in our department.

Despite our short series and follow up (6 implants in 2 months) the properties of porous tantalum, already tested in acetabular implants, represent an alternative to the traditional ways of tibial tray fixation.

The abstracts were prepared by Nico Verdoschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, Universitair Medisch Centrum, Orthopaedie / CSS1, Huispost 800, Postbus 9101, 6500 HB Nijmegen, Th. Craanenlaan 7, 6525 GH Nijmegen, The Netherlands.