header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE MAYO CONSERVATIVE FEMORAL STEM: A PHOTO-ELASTIC COATING STUDY TO EVALUATE STRAIN IN THE PROXIMAL FEMUR



Abstract

The Mayo Conservative uncemented stem (Zimmer, Warsaw, USA) is designed to conserve proximal bone stock by virtue of a minimal neck resection and to maintain proximal femoral stress transfer, thereby reducing problems associated with stress shielding.

This study was performed to evaluate proximal femoral strain after implantation of the Mayo stem, in cadaveric femora.

Eight fresh-frozen cadaveric femora (each selected at random from within a pair) of known bone mineral density were prepared and coated with photoelastic materials (Measurements Group, Raleigh NC). Strain patterns of the intact bone were determined using a reflection polariscope, and recorded photographically, while under load. Quantitative measurements were taken from set points of the proximal femur. The femoral head was then replaced using a Mayo femoral prosthesis. Under the same loading conditions strain patterns were re-examined and measurements taken from the same set points.

The strain patterns following insertion of the Mayo stem closely matched those seen in intact femora except in two areas. Strain was reduced in the region of the lesser trochanter (53% of normal), although more proximal than this strain in the neck was closer to intact values (78% of normal). Previous studies have found that implantation of diaphyseal press fit stems in particular have led to significant reductions in shear strain values in the calcar region and distally along the medial border of the femur.

This study documents the strain pattern in the proximal femur after implantation with a new “conservative” short stem cementless prosthesis. The hypothesis that the Mayo femoral stem maintains proximal femoral stress transfer and may thus prevent stress shielding in vivo remains to be proven, but is supported by the results of this study.

The abstracts were prepared by Mr Simon Donell. Correspondence should be addressed to him at the Department of Orthopaedics, Norfolk & Norwich Hospital, Level 4, Centre Block, Colney Lane, Norwich NR4 7UY, United Kingdom