header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

POSTERIOR DECOMPRESSION AND VERTEBRAL RECONSTRUCTION FOR THORACO–LUMBAR BURST FRACTURES



Abstract

Introduction: The management of patients with thoracolumbar burst fractures has evolved over the last 60 years from the days of conservative management through to the current era of anterior decompression combined with either anterior or posterior stabilisation. There is no doubt that surgical outcomes have improved markedly with the more modern techniques. Nevertheless, there are still technical and other difficulties, which the surgeon may encounter. Based upon his experience with posterior vertebrectomy and reconstruction for thoracolumbar tumours, the author has used this technique for the management of acute burst fractures in this region.

This paper presents a review of 10 patients with severe thoracolumbar burst fracture or fracture dislocation managed since 1997, using a single stage posterior decompression, realignment and stabilisation/interbody fusion.

Methods: Data were acquired prospectively on consecutive patients between June 1997 and October 2000. All patients underwent single stage posterior decompression via laminectomy and then a subtotal eggshell vertebrectomy with removal of any herniated bone fragment(s) or partial vertebrectomy/ pedicle subtraction osteotomy. Pedicle screw stabilisation was performed to include one or two vertebrae above and below the involved vertebra(e). The intervertebral discs adjacent to the fractured vertebra were removed prior to realigning the vertebral column and performing inter-body fusion using carbon fibre spacers and autograft (4 patients) or vertebral body reconstruction with Titanium mesh cages and autograft (6 patients).

Results: The mean age was 37 years (21–52 years). There were six males and four females. Three patients had no neurological deficit. Seven had incomplete paraplegia, three of which were severe with no or only a flicker of leg movement. The principal fracture involved L1 in 6 patients, L2 in 2, L4 in 1 and L5 in 1. Seven had herniated bone fragments occupying 90+% of the spinal canal. Of the seven patients with incomplete paraplegia, all recovered the ability to walk. Two with conus lesions still self catheterize. There were no serious early complications. A serious late complication was the development at three months of a severe deep wound infection, which required debridement and subsequent anterior/ posterior revision surgery. One patient with severe polytrauma and an L4 burst fracture/dislocation has developed a chronic pain syndrome.

Discussion: The decompression, realignment, interbody reconstruction and stabilisation of thoracolumbar burst fractures/dislocations using a single stage posterior technique is technically demanding but the neurological outcome and restoration of spinal balance in these 10 patients was gratifying. The procedure appears to have two advantages over an anterior decompression and reconstruction combined with anterior or posterior stabilisation: first, it appears to provide easier access and improved visualisation for lumbar burst fractures where the psoas muscle may be swollen and contused, and second, it allows for easier realignment of any coronal or sagittal deformity.

The abstracts were prepared by Dr Robert J. Moore. Correspondence should be addressed to him at The Spine Society of Australia, Institute of Medical and Veterinary Science, The Adelaide Centre for Spinal Research, Frome Road, Adelaide, South Australia 5000