header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE ROTATIONAL AXIS PATHWAY OF THE SHOULDER IN THE SAGITTAL PLANE



Abstract

The aim of this study was to investigate if the rotational axis of normal human shoulders moves during flexion in the sagittal plane.

Twenty four shoulders were measured in twelve normal volunteers, aged 25-42, height range 1.65-1.88 m and weight range 63–120 Kg. Each subject had surface markers placed on their iliac crests, mastoid processes and upper arms. Joint movement was video recorded as shoulders were actively flexed and extended in the sagittal plane. For each joint, a typical flexion sweep was selected and replayed into a computerised imaging system, where still frames were captured at 20 degree intervals from 20 to 120 degrees. These images were analysed to extract the co-ordinates of each marker. The coordinates were then processed to determine the Instant Centres of Rotation (ICR) for each angle of flexion. These ICR’s were then plotted to derive the Rotational Axis Pathway (RAP) for each shoulder joint.

The results indicate that throughout the flexion arc, the rotational axis is located in the region of the humeral head. At the start of the arc the rotational axis is in the anterio-superior part of the shoulder joint. As the shoulder flexes forward the rotational axis moves posteriorly following a curved pathway. In 18 cases the RAPs moved posterio-inferiorly and in six cases the RAPs moved posterio-superiorly. The pathways can be quantified in terms of their curved pathway lengths and the displacements of their end points from their start points. In the case of the 18 posterio-inferior pathways, the mean pathway length was 98.3 mm (SD=31.5) and the mean posterior/inferior displacements were 59.6 mm (SD=34.7) and 43.2 mm (SD=24.6) respectively. In the case of the 6 posterior-superior pathways, the mean pathway length was 109.4 mm (SD=40.2) and the mean posterior/ superior displacements were 94.7 mm (SD=43.9) & 20.9 mm (SD=11.1) respectively. The variation in inferior-superior displacement of the axis may be due to normal variations in scapula movement during forward flexion.

This investigation indicates that in normal subjects, the rotational axis moves posteriorly during flexion.

The abstracts were prepared by Mr Roger Emery. Correspondence should be addressed to him at the British Orthopaedic Association, Royal College of Surgeons, 35-43 Lincoln’s Inn Fields, London WC2A 3PN