header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

ENGINEERING CONSIDERATIONS IN THE INTERNAL FIXATION OF FRACTURES OF THE TIBIAL SHAFT



Download PDF

Abstract

1. The probable greatest bending moment applied to a plated or nailed fracture of the tibia during restricted weight-bearing is estimated to be, in men, up to about 79 Newton metres (58 poundsforce feet). The maximum twisting moment is estimated to be about 29 Newton metres (22 poundsforce feet).

2. Twenty-two human tibiae were loaded in three-point bending and broke at bending moments of from 57·9 to 294 Newton metres (42·7 to 216 poundsforce feet) if they had not previously been drilled; tibiae which had holes made through both cortices with a c. 3-millimetre (⅛-inch) drill broke at from 32·4 to 144 Newton metres (23·8 to 106 poundsforce feet). Tibiae loaded in torsion broke at twisting moments of from 27·5 to 892 Newton metres (20·2 to 65·8 poundsforce feet) when not drilled, 23·6 to 77·5 Newton metres (l7·3 to 57·1 poundsforce feet) when drilled.

3. When bent so as to open the fracture site, the 14-centimetre Stamm was the strongest of all the single plates tested (reaching its elastic limit at a bending moment of 17·6 Newton metres (13 poundsforce feet) and 5 degrees total angulation at 22·6 Newton metres (16·6 poundsforce feet)), while the Venable was the weakest (elastic limit 4·9 Newton metres (3·6 poundsforce feet) and 5 degrees at 7·9 Newton metres (5·8 poundsforce feet)). A 13-millimetre Küntscher nail reached its elastic limit at 42·2 Newton metres (31·1 poundsforce feet) and 5 degrees total angulation at 49 Newton metres (36 poundsforce feet).

4. In torsion the 15-centimetre Hicks was the strongest ofthe plates (elastic limit 27·5 Newton metres (20·2 poundsforce feet) and 5 degrees rotation at 16·7 Newton metres (l2·3 poundsforce feet)).

5. Küntscher nails in bones provided no dependable strength in torsion.

6. In both bending and torsion, a preparation of one Venable plate on each of the two anterior surfaces was stronger than any single plate, and was as strong as the weaker drilled tibiae.

7. The three currently available metallic materials (stainless steel, cobalt-chrome and titanium) have static mechanical properties so similar that the choice between them can be made on other grounds.

8. The highest load applied to a screw during bending tests was about half that needed to pull a screw out of even a thin-walled tibia.

9. Screws beyond four for one plate are mechanically redundant at the moment of implantation but may be necessary as an insurance against subsequent deterioration in strength.

10. Countersinks in plates are a source of significant weakness, and should preferably be as shallow as possible.

11. An unoccupied screw hole in the centre of a plate is a source of serious weakness.

12. Only the strongest implants tested were strong enough to withstand the bending or twisting moments to be expected in restricted weight-bearing. In two-plate preparations a danger is introduced by the fact that these moments are similar to those required to Ireak a drilled tibia.

For access options please click here