header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

BONE STRUCTURE IN OSTEOMALACIA, WITH SPECIAL REFERENCE TO ULTRASTRUCTURE



Download PDF

Abstract

1. Four cases of osteomalacia secondary to vitamin D deficiency have been investigated histologically and with the electron microscope.

2. Three main types of cells were found along the osteoid tissue. Cells of Group 1 are like normal osteoblasts, except that their cytoplasm has an ordered granular endoplasmic reticulum, without enlarged cysternae. Moreover, it contains isolated rosettes of glycogen. Cells of Group 2 are like young progenitor cells. There are almost no rough cysternae in the cytoplasm. This contains clusters of glycogen, isolated ribosomes and many mitochondria. Cells of Group 3 are structurally like "resting" flat osteoblasts in normal bone.

3. The paper discusses how the presence of the three groups may be related to vitamin D deficiency or secondary hyperparathyroidism.

4. Malacic osteoid tissue consists of apparently normal collagen fibrils. Both optical and electron microscopy show that this tissue can calcify. But calcification stops at an early stage, or proceeds much more slowly than normal. So large areas ofosteoid tissue are left uncalcified.

5. Calcium salts are laid down either as needle-shaped crystals exactly like those in normal bone, or else abnormally. Where abnormal they either appear in a finely granular, almost amorphous form, or else acquire a characteristic star-like crystalline structure.

6. Where calcification takes place bundles of laterally aggregated collagen fibrils are found.

For access options please click here