The Bone \& Joint Journal

Over 70 years of orthopaedic excellence

Supplementary Material

10.1302/0301-620X.105B1.BJJ-2022-0465.R2

Table i. Inclusion and exclusion criteria.

| Inclusion |
| :--- | :--- |
| - Non-inflammatory knee osteoarthritis |
| - Unilateral osteoarthritis, or bilateral with contralateral knee functioning | properly, not operated on in the last 6 months and not planned for TKA in the coming 2 years

- Set to receive a primary cemented TKA
- Age 40 to 75 years, inclusive, on the day of operation
- Stable health (ASA grade ≤ 3), free of or treated for cardiac, pulmonary, haematological, or other conditions that would pose excessive operative risk
- Correctable or $<10^{\circ}$ rigid (non-correctable) varus or valgus deformity of the knee

Exclusion

- $\mathrm{BMI}>35 \mathrm{~kg} / \mathrm{m}^{2}$
- Expected physical activity after surgery is 2 or less on the UCLA activity scale
- Previous hip arthroplasty surgery in the last 6 months, or planned hip arthroplasty in the next 6 to 12 months
- Major, non-arthroscopic surgery to the study knee, including HTO
- Active, local infection or systemic infection
- Prior high-energy trauma to the affected knee or prior history of anterior and/or posterior cruciate ligament rupture
- Suspicion of anterior and/or posterior cruciate ligament rupture at clinical examination
- Documented osteoporosis with patient in active medical treatment
- Patient has physical, emotional, or neurological conditions that would compromise compliance with postoperative rehabilitation and follow-up
- Bone quality compromised by disease or infection which cannot provide adequate support and/or fixation to the prosthesis
- Severe instability of the knee joint secondary to the absence of collateral ligament integrity and function

ASA, American Society of Anesthesiologists; HTO, high tibial osteotomy; MRC, Medical Research Council; TKA, total knee arthroplasty; UCLA, University of California, Los Angeles.

Table ii. Median migration, translation in mm and rotation in ${ }^{\circ}$, of the femoral component at all follow-up points for the bicruciate-retaining and cruciateretaining implants.

Variable	BCR					CR				
	6 wks	3 mths	6 mths	12 mths	24 mths	6 wks	3 mths	6 mths	12 mths	24 mths
Medial translation (Tx) (mm)										
Median (IQR)	$\begin{aligned} & -0.078 \\ & (-0.17 \text { to } 0.00) \end{aligned}$	$\begin{aligned} & -0.18 \\ & (-0.23 \text { to }-0.08)^{*} \end{aligned}$	$\begin{aligned} & -0.16 \\ & (-0.28 \text { to } 0.13) \end{aligned}$	$\begin{aligned} & -0.12 \\ & (-0.31 \text { to } 0.20) \end{aligned}$	$\begin{aligned} & -0.15 \\ & (-0.30 \text { to } 0.23) \end{aligned}$	$\begin{aligned} & -0.018 \\ & (-0.11 \text { to } 0.05) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (-0.14 \text { to } 0.13) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (-0.10 \text { to } 0.02) \end{aligned}$	$\begin{aligned} & -0.088 \\ & (-0.20 \text { to } 0.16) \end{aligned}$	$\begin{aligned} & 0.0016 \\ & (-0.14 \text { to } 0.12) \end{aligned}$
Proximal translation (Ty) (mm)										
Median (IQR)	$\begin{aligned} & 0.050 \\ & (-0.00 \text { to } 0.09) \end{aligned}$	$\begin{aligned} & 0.066 \\ & (-0.05 \text { to } 0.12) \end{aligned}$	$\begin{aligned} & 0.070 \\ & (0.02 \text { to } 0.15) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.00 \text { to } 0.19) \end{aligned}$	$\begin{aligned} & 0.077 \\ & (-0.02 \text { to } 0.23) \end{aligned}$	$\begin{aligned} & 0.031 \\ & (-0.05 \text { to } 0.10) \end{aligned}$	$\begin{aligned} & 0.084 \\ & (0.01 \text { to } 0.13) \end{aligned}$	$\begin{aligned} & 0.067 \\ & (-0.00 \text { to } 0.15) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (-0.02 \text { to } 0.17) \end{aligned}$	$\begin{aligned} & 0.065 \\ & (-0.02 \text { to } 0.18) \end{aligned}$
Anterior translation (Tz) (mm)										
Median (IQR)	$\begin{aligned} & 0.091 \\ & (-0.10 \text { to } 0.13) \end{aligned}$	$\begin{aligned} & 0.12 \\ & (-0.06 \text { to } 0.41) \end{aligned}$	$\begin{aligned} & 0.020 \\ & (-0.11 \text { to } 0.39) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (-0.13 \text { to } 0.48) \end{aligned}$	$\begin{aligned} & 0.28 \\ & (-0.01 \text { to } 0.38) \end{aligned}$	$\begin{aligned} & 0.089 \\ & (-0.07 \text { to } 0.27) \end{aligned}$	$\begin{aligned} & 0.10 \\ & (-0.24 \text { to } 0.22) \end{aligned}$	$\begin{aligned} & 0.12 \\ & (-0.14 \text { to } 0.39) \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (-0.12 \text { to } 0.40) \end{aligned}$	$\begin{aligned} & \hline 0.11 \\ & (-0.16 \text { to } 0.48) \end{aligned}$

Median (IQR)	$\begin{aligned} & \hline 0.20 \\ & (0.15 \text { to } 0.33) \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & (0.23 \text { to } 0.47) \end{aligned}$	$\begin{aligned} & \hline 0.40 \\ & (0.23 \text { to } 0.64) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (0.29 \text { to } 0.81) \end{aligned}$	$\begin{aligned} & 0.46 \\ & (0.32 \text { to } 0.82) \end{aligned}$	$\begin{aligned} & \hline 0.32 \\ & \text { (0.16 to } 0.39 \text {) } \end{aligned}$	$\begin{aligned} & 0.28 \\ & (0.23 \text { to } 0.40) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.18 \text { to } 0.49) \end{aligned}$	$\begin{aligned} & \hline 0.39 \\ & (0.25 \text { to } 0.95) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (0.20 \text { to } 0.71) \end{aligned}$
Flexion (Rx) (${ }^{\circ}$)										
Median (IQR)	$\begin{aligned} & \hline-0.050 \\ & (-0.11 \text { to } 0.17) \end{aligned}$	$\begin{aligned} & \hline 0.011 \\ & (-0.37 \text { to } 0.16) \end{aligned}$	$\begin{aligned} & \hline 0.0056 \\ & (-0.18 \text { to } 0.23) \end{aligned}$	$\begin{aligned} & \hline-0.011 \\ & (-0.21 \text { to } 0.31) \end{aligned}$	$\begin{aligned} & \hline-0.087 \\ & (-0.29 \text { to } 0.06) \end{aligned}$	$\begin{aligned} & \hline 0.034 \\ & (-0.15 \text { to } 0.21) \end{aligned}$	$\begin{aligned} & \hline 0.072 \\ & (-0.18 \text { to } 0.22) \end{aligned}$	$\begin{aligned} & \hline 0.031 \\ & (-0.28 \text { to } 0.23) \end{aligned}$	$\begin{aligned} & \hline-0.015 \\ & (-0.11 \text { to } 0.36) \end{aligned}$	$\begin{aligned} & \hline 0.045 \\ & (-0.33 \text { to } 0.48) \end{aligned}$
Internal rotation (Ry) (${ }^{\circ}$)										
Median (IQR)	$\begin{aligned} & 0.052 \\ & (-0.06 \text { to } 0.25) \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (0.04 \text { to } 0.32)^{*} \end{aligned}$	$\begin{aligned} & 0.13 \\ & (-0.19 \text { to } 0.28) \end{aligned}$	$\begin{aligned} & 0.044 \\ & (-0.12 \text { to } 0.30) \end{aligned}$	$\begin{aligned} & \hline 0.12 \\ & (-0.06 \text { to } 0.37) \end{aligned}$	$\begin{aligned} & 0.037 \\ & (-0.17 \text { to } 0.33) \end{aligned}$	$\begin{aligned} & -0.075 \\ & (-0.20 \text { to } 0.14) \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & (-0.14 \text { to } 0.28) \end{aligned}$	$\begin{aligned} & 0.0055 \\ & (-0.20 \text { to } 0.32) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (-0.13 \text { to } 0.30) \end{aligned}$
Varus (Rz) (${ }^{\circ}$)										
Median (IQR)	$\begin{aligned} & \hline 0.014 \\ & (-0.06 \text { to } 0.09) \end{aligned}$	$\begin{aligned} & -0.040 \\ & (-0.12 \text { to }-0.00) \end{aligned}$	$\begin{aligned} & \hline-0.041 \\ & (-0.11 \text { to } 0.08) \end{aligned}$	$\begin{aligned} & \hline-0.054 \\ & (-0.18 \text { to } 0.08) \end{aligned}$	$\begin{aligned} & \hline-0.0093 \\ & (-0.12 \text { to } 0.24) \end{aligned}$	$\begin{aligned} & \hline 0.013 \\ & (-0.13 \text { to } 0.10) \end{aligned}$	$\begin{aligned} & \hline-0.0060 \\ & (-0.12 \text { to } 0.11) \end{aligned}$	$\begin{aligned} & \hline 0.015 \\ & (-0.20 \text { to } 0.07) \end{aligned}$	$\begin{aligned} & \hline 0.016 \\ & (-0.14 \text { to } 0.08) \end{aligned}$	$\begin{aligned} & \hline 0.050 \\ & (-0.08 \text { to } 0.17) \end{aligned}$
TR (${ }^{\circ}$)										
Median (IQR)	$\begin{aligned} & 0.29 \\ & (0.14 \text { to } 0.51) \end{aligned}$	$\begin{aligned} & 0.32 \\ & (0.19 \text { to } 0.55 \text {) } \end{aligned}$	$\begin{aligned} & 0.38 \\ & (0.28 \text { to } 0.58) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.39 \text { to } 0.88 \text {) } \end{aligned}$	$\begin{aligned} & 0.50 \\ & (0.40 \text { to } 0.93) \end{aligned}$	$\begin{aligned} & 0.42 \\ & (0.26 \text { to } 0.52) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.26 \text { to } 0.40) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (0.29 \text { to } 0.61) \end{aligned}$	$\begin{aligned} & 0.50 \\ & \text { (0.22 to 0.89) } \end{aligned}$	$\begin{aligned} & 0.45 \\ & (0.22 \text { to } 0.92) \end{aligned}$
MTPM (mm)										
Median (IQR)	$\begin{aligned} & 0.35 \\ & (0.26 \text { to } 0.57) \end{aligned}$	$\begin{aligned} & 0.53 \\ & (0.33 \text { to } 0.82 \text {) } \end{aligned}$	$\begin{aligned} & 0.63 \\ & (0.42 \text { to } 0.93) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (0.55 \text { to } 1.29) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (0.56 \text { to } 1.28) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.41 \text { to } 0.67) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.37 \text { to } 0.63) \end{aligned}$	$\begin{aligned} & 0.61 \\ & (0.38 \text { to } 0.76) \end{aligned}$	$\begin{aligned} & 0.54 \\ & \text { (0.44 to 1.44) } \end{aligned}$	$\begin{aligned} & 0.61 \\ & (0.37 \text { to } 1.05 \text {) } \end{aligned}$

*A significant difference ($\mathrm{p}<0.05$) between the BCR and CR implants, tested using a Mann-Whitney U test.
$B C R$, bicruciate-retaining; CR, cruciate-retaining; IQR, interquartile range; MPTM, maximum total point motion; TR, total rotation.

Table iii. Median migration, translation in mm and rotation in°, of the tibial component at all follow-up points for the bicruciate-retaining and cruciateretaining implants.

Variable	BCR								CR			
	6 wks	3 mths	6 mths	12 mths		24 mt		6 wks	3 mths	6 mths	12 mths	24 mths
Medial translation (Tx) (mm)												
Median (IQR)	$\begin{aligned} & 0.046 \\ & (-0.03 \text { to } \\ & 0.13)^{*} \end{aligned}$	$\begin{aligned} & 0.029 \\ & (-0.03 \text { to } \\ & 0.10) \end{aligned}$	$\begin{aligned} & 0.073 \\ & \text { (0.02 to } \\ & 0.13 \text {) } \end{aligned}$	$\begin{aligned} & 0.063 \\ & (-0.07 \text { to } 0.14) \end{aligned}$		$\begin{aligned} & 0.068 \\ & (0.01 \text { to } 0.18) \end{aligned}$		$\begin{aligned} & -0.028 \\ & (-0.10 \text { to } 0.05) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (-0.12 \text { to } \\ & 0.07) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (-0.20 \text { to } \\ & 0.05) \end{aligned}$	$\begin{aligned} & -0.0015 \\ & (-0.08 \text { to } \\ & 0.06) \end{aligned}$	$\begin{aligned} & 0.0098 \\ & (-0.08 \text { to } \\ & 0.10) \end{aligned}$
Proximal translation (Ty) (mm)												
Median (IQR)	$\begin{aligned} & \hline 0.025 \\ & (0.01 \text { to } 0.05) \end{aligned}$	$\begin{aligned} & \hline 0.029 \\ & (-0.02 \text { to } 0.09) \end{aligned}$		$\begin{aligned} & \hline 0.044 \\ & (-0.01 \text { to } \\ & 0.11) \end{aligned}$	$\begin{aligned} & \hline 0.11 \\ & \text { (0.01 to } \end{aligned}$		$\begin{aligned} & 0.090 \\ & (-0.03 \text { to } 0.13) \end{aligned}$	$\begin{aligned} & \hline 0.032 \\ & (0.01 \text { to } 0.11) \end{aligned}$	$\begin{aligned} & \hline 0.061 \\ & (0.01 \text { to } 0.12) \end{aligned}$	$\begin{aligned} & \hline 0.099 \\ & (0.03 \text { to } 0.15) \end{aligned}$	$\begin{aligned} & \hline 0.12 \\ & (0.05 \text { to } 0.19) \end{aligned}$	$\begin{aligned} & \hline 0.15 \\ & (0.06 \text { to } 0.22) \end{aligned}$
Anterior translation (Tz) (mm)												
Median (IQR)	$\begin{aligned} & \hline-0.032 \\ & (-0.06 \text { to } 0.04) \end{aligned}$	$\begin{aligned} & \hline 0.017 \\ & (-0.09 \text { to } 0.16) \end{aligned}$		$\begin{aligned} & -0.0047 \\ & (-0.05 \text { to } \\ & 0.17) \end{aligned}$	$\begin{aligned} & \hline 0.024 \\ & (-0.18 \text { tc } \end{aligned}$	(0.19	$\begin{aligned} & \hline-0.018 \\ & (-0.16 \text { to } 0.15) \end{aligned}$	$\begin{aligned} & 0.046 \\ & (-0.09 \text { to } \\ & 0.19) \end{aligned}$	$\begin{aligned} & \hline 0.034 \\ & (-0.08 \text { to } \\ & 0.13) \end{aligned}$	$\begin{aligned} & \hline 0.064 \\ & (-0.13 \text { to } \\ & 0.29) \end{aligned}$	$\begin{aligned} & \hline 0.14 \\ & (-0.07 \text { to } \\ & 0.36) \end{aligned}$	$\begin{aligned} & \hline 0.16 \\ & (-0.09 \text { to } \\ & 0.36) \end{aligned}$
Total translation (TT) (mm)												
Median (IQR)	$\begin{aligned} & \hline 0.13 \\ & (0.065 \text { to } 0.19) \end{aligned}$	$\begin{aligned} & \hline 0.19 \\ & (0.12 \text { to } 0.30) \end{aligned}$		$\begin{aligned} & \hline 0.21 \\ & (0.15 \text { to } 0.43) \end{aligned}$	$\begin{aligned} & \hline 0.31 \\ & \text { (0.20 to } \end{aligned}$		$\begin{aligned} & \hline 0.29 \\ & (0.19 \text { to } 0.42) \end{aligned}$	$\begin{aligned} & 0.23 \\ & (0.13 \text { to } 0.35) \end{aligned}$	$\begin{aligned} & \hline 0.24 \\ & (0.12 \text { to } 0.32) \end{aligned}$	$\begin{aligned} & \hline 0.27 \\ & (0.15 \text { to } 0.46) \end{aligned}$	$\begin{aligned} & \hline 0.28 \\ & (0.21 \text { to } 0.44) \end{aligned}$	$\begin{aligned} & \hline 0.31 \\ & (0.24 \text { to } 0.52) \end{aligned}$
Anterior tilt (Rx) (${ }^{\circ}$)												
Median (IQR)	$\begin{aligned} & -0.054 \\ & (-0.29 \text { to } 0.14) \end{aligned}$	$\begin{aligned} & \hline-0.16 \\ & (-0.36 \text { to } 0.08) \end{aligned}$		$\begin{aligned} & \hline-0.23 \\ & (-0.46 \text { to } \\ & 0.08) \end{aligned}$	$\begin{aligned} & -0.45 \\ & (-0.57 \text { tc } \\ & 0.05)^{*} \end{aligned}$		$\begin{aligned} & -0.38 \\ & (-0.71 \text { to }- \\ & 0.08)^{*} \end{aligned}$	$\begin{aligned} & \hline 0.11 \\ & (-0.19 \text { to } \\ & 0.19) \end{aligned}$	$\begin{aligned} & -0.018 \\ & (-0.13 \text { to } \\ & 0.20) \end{aligned}$	$\begin{aligned} & \hline 0.033 \\ & (-0.14 \text { to } \\ & 0.32) \end{aligned}$	$\begin{aligned} & \hline 0.094 \\ & (-0.13 \text { to } \\ & 0.29) \end{aligned}$	$\begin{aligned} & 0.044 \\ & (-0.28 \text { to } \\ & 0.33) \end{aligned}$
Internal rotation (Ry) (${ }^{\circ}$)												
Median (IQR)	$\begin{aligned} & 0.026 \\ & (-0.07 \text { to } 0.06) \end{aligned}$	$\begin{aligned} & \hline 0.0062 \\ & (-0.17 \text { to } 0.06) \end{aligned}$		0.048	$\begin{aligned} & 0.069 \\ & (-0.27 \text { tc } \end{aligned}$	(0.29)	$\begin{aligned} & 0.081 \\ & (-0.17 \text { to } 0.41)^{*} \end{aligned}$	0.0011	0.0075	-0.15	-0.23	-0.23

			$\begin{aligned} & (-0.16 \text { to } \\ & 0.12) \end{aligned}$			$\begin{aligned} & (-0.14 \text { to } \\ & 0.20) \end{aligned}$	$\begin{aligned} & (-0.16 \text { to } \\ & 0.11) \end{aligned}$	$\begin{aligned} & (-0.39 \text { to } \\ & 0.20) \end{aligned}$	$\begin{aligned} & (-0.40 \text { to } \\ & 0.13) \end{aligned}$	$\begin{aligned} & (-0.44 \text { to } \\ & 0.02) \end{aligned}$
Valgus (Rz) (${ }^{\circ}$)										
Median (IQR)	$\begin{aligned} & -0.016 \\ & (-0.13 \text { to } 0.06) \end{aligned}$	$\begin{aligned} & \hline-0.021 \\ & (-0.11 \text { to } 0.08) \end{aligned}$	$\begin{aligned} & \hline-0.16 \\ & (-0.34 \text { to } \\ & 0.21) \end{aligned}$	$\begin{aligned} & -0.22 \\ & (-0.39 \text { to } 0.07) \end{aligned}$	$\begin{aligned} & -0.20 \\ & (-0.41 \text { to }- \\ & 0.07)^{*} \end{aligned}$	$\begin{aligned} & 0.052 \\ & (-0.01 \text { to } 0.9) \end{aligned}$	$\begin{aligned} & \hline 0.037 \\ & (-0.08 \text { to } \\ & 0.18) \end{aligned}$	$\begin{aligned} & \hline 0.068 \\ & (-0.07 \text { to } \\ & 0.17) \end{aligned}$	$\begin{aligned} & \hline 0.011 \\ & (-0.09 \text { to } \\ & 0.09) \end{aligned}$	$\begin{aligned} & \hline 0.029 \\ & (-0.16 \text { to } \\ & 0.13) \end{aligned}$
TR (${ }^{\circ}$)										
Median (IQR)	$\begin{aligned} & 0.26 \\ & (0.15 \text { to } 0.38) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.23 \text { to } 0.51) \end{aligned}$	$\begin{aligned} & 0.49 \\ & (0.38 \text { to } 0.76) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.54 \text { to } 1.01) \end{aligned}$	$\begin{aligned} & 0.78 \\ & (0.51 \text { to } 1.00) \end{aligned}$	$\begin{aligned} & 0.31 \\ & (0.21 \text { to } 0.49) \end{aligned}$	$\begin{aligned} & 0.29 \\ & (0.21 \text { to } 0.59) \end{aligned}$	$\begin{aligned} & 0.45 \\ & (0.32 \text { to } 0.62) \end{aligned}$	$\begin{aligned} & 0.41 \\ & (0.29 \text { to } 0.68) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.30 \text { to } 0.70) \end{aligned}$
MTPM (mm)										
Median (IQR)	$\begin{aligned} & 0.23 \\ & (0.14 \text { to } 0.33) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.20 \text { to } 0.54) \end{aligned}$	$\begin{aligned} & 0.49 \\ & (0.34 \text { to } 0.72) \end{aligned}$	$\begin{aligned} & 0.61 \\ & (0.41 \text { to } 0.98) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.41 \text { to } 0.92) \end{aligned}$	$\begin{aligned} & 0.41 \\ & (0.26 \text { to } 0.60) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (0.24 \text { to } 0.65) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.33 \text { to } 0.85) \end{aligned}$	$\begin{aligned} & 0.54 \\ & (0.36 \text { to } 0.75) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (0.43 \text { to } 0.81) \end{aligned}$

*Significant difference ($\mathrm{p}<0.05$) between the BCR and CR implants, tested using a Mann-Whitney U test.
$B C R$, bicruciate-retaining; CR, cruciate-retaining; IQR, interquartile range; MTPM, maximum total point motion; TR, total rotation.

