

Supplementary Material

10.1302/0301-620X.104B4.BJJ-2021-1677.R1

Detailed search strategies and search words across databases

Embase search

#	Searches
1	exp adolescent idiopathic scoliosis/
2	prognosis/
3	disease course/
4	disease exacerbation/
5	treatment outcome/ or clinical outcome/
6	2 or 3 or 4 or 5
7	(progress* or prognos* or outcome*).mp. [mp=title, abstract, heading word,
	drug trade name, original title, device manufacturer, drug manufacturer, device
	trade name, keyword, floating subheading word, candidate term word]
8	radiography/
9	nuclear magnetic resonance imaging/
10	echography/
11	imaging/
12	X ray/
13	8 or 9 or 10 or 11 or 12
14	(imaging or X ray* or magnetic resonance imaging or ultraso* or radiogra* or
	roentgenogra* or skiagra*).mp. [mp=title, abstract, heading word, drug trade
	name, original title, device manufacturer, drug manufacturer, device trade name,

keyword, floating subheading word, candidate term word]

- 15 13 or 14
- 16 6 or 7
- 17 1 and 15 and 16

18 limit 17 to dc=19470101-20201231

Medline search

Searches

- 1 Scoliosis/
- 2 Adolescent/
- 3 'adolescent idiopathic scoliosis'.mp.
- 4 1 and 2
- 5 3 or 4
- 6 disease progression/
- 7 Prognosis/
- 8 ('disease exacerbation' or 'disease course' or 'treatment outcome' or 'clinical outcome' or 'progress*' or 'outcome*' or 'prognos*').mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating subheading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]
- 9 6 or 7 or 8
- 10 Radiography/
- 11 Magnetic Resonance Imaging/
- 12 Ultrasonography/
- 13 ('Nuclear magnetic resonance imaging' or 'echogra*' or 'imaging' or 'X\$ray' or 'radiogra*' or 'MRI' or 'roentgenogra*' or 'skiagra*').mp. [mp=title, abstract, original title, name of substance word, subject heading word, floating sub-heading word, keyword heading word, organism supplementary concept word, protocol supplementary concept word, rare disease supplementary concept word, unique identifier, synonyms]
- 14 10 or 11 or 12 or 13
- 15 5 and 9 and 14
- 16 limit 15 to dt=19000101-20201231

Web of Science search

Searches

- 1 ALL=(adolescen* AND idiopathic scolios?s) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=1956-2020
- 2 ALL=(progress* OR prognos* OR outcome* OR exacerbation OR disease course) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=1956-2020
- 3 ALL=(imaging* OR X ray* OR magnetic resonance imaging OR MRI OR radiogra* OR roentgenogra* OR skiagra* OR ultraso* OR NMR OR nuclear magnetic resona nce)

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=1956-2020

4 #1 AND #2 AND #3

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=1956-2020

PubMed search (date limit from 1900/1/1 to 2020/12/31)

((("adolescences"[All Fields] OR "adolescency"[All Fields] OR "adolescent"[MeSH Terms] OR "adolescent" [All Fields] OR "adolescence" [All Fields] OR "adolescents" [All Fields] OR "adolescent s"[All Fields]) AND ("idiopathic"[All Fields] OR "idiopathically"[All Fields] OR "idiopathics"[All Fields]) AND ("scoliosis"[MeSH Terms] OR "scoliosis" [All Fields] OR "scolioses" [All Fields])) OR (("adolescences" [All Fields] OR "adolescency"[All Fields] OR "adolescent"[MeSH Terms] OR "adolescent"[All Fields] OR "adolescence"[All Fields] OR "adolescents"[All Fields] OR "adolescent s"[All Fields]) AND ("scoliosis"[MeSH Terms] OR "scoliosis"[All Fields] OR "scolioses"[All Fields]))) AND ("disease progression" [MeSH Terms] OR ("disease" [All Fields] AND "progression"[All Fields]) OR "disease progression"[All Fields] OR ("disease"[All Fields] AND "course" [All Fields]) OR "disease course" [All Fields] OR ("disease progression"[MeSH Terms] OR ("disease"[All Fields] AND "progression"[All Fields]) OR "disease progression"[All Fields] OR ("disease"[All Fields] AND "exacerbation"[All Fields]) OR "disease exacerbation"[All Fields]) OR ("treatment outcome"[MeSH Terms] OR ("treatment"[All Fields] AND "outcome"[All Fields]) OR "treatment outcome"[All Fields]) OR (("ambulatory care facilities"[MeSH Terms] OR ("ambulatory"[All Fields] AND "care"[All Fields] AND "facilities"[All Fields]) OR "ambulatory care facilities"[All Fields] OR "clinic" [All Fields] OR "clinic s" [All Fields] OR "clinical" [All Fields] OR "clinically"[All Fields] OR "clinicals"[All Fields] OR "clinics"[All Fields]) AND ("outcome"[All Fields] OR "outcomes"[All Fields])) OR ("prognosis"[MeSH Terms] OR "prognosis"[All Fields] OR "prognoses"[All Fields]) OR ("disease progression"[MeSH Terms] OR ("disease"[All Fields] AND "progression"[All Fields]) OR "disease progression"[All Fields])) AND ("diagnostic imaging"[MeSH Subheading] OR ("diagnostic"[All Fields] AND "imaging"[All Fields]) OR "diagnostic imaging"[All Fields] OR "radiography" [All Fields] OR "radiography" [MeSH Terms] OR "radiographies" [All Fields] OR "radiographys" [All Fields] OR ("magnetic resonance imaging" [MeSH Terms] OR ("magnetic" [All Fields] AND "resonance" [All Fields] AND "imaging" [All Fields]) OR "magnetic resonance imaging"[All Fields]) OR ("diagnostic imaging"[MeSH Subheading] OR ("diagnostic" [All Fields] AND "imaging" [All Fields]) OR "diagnostic imaging"[All Fields] OR "ultrasonography"[All Fields] OR "ultrasonography"[MeSH Terms] OR "ultrasonographies"[All Fields]) OR ("magnetic resonance spectroscopy"[MeSH Terms] OR ("magnetic"[All Fields] AND "resonance"[All Fields] AND "spectroscopy"[All Fields]) OR "magnetic resonance spectroscopy"[All Fields] OR ("nuclear"[All Fields] AND "magnetic"[All Fields] AND "resonance"[All Fields]) OR "nuclear magnetic resonance"[All Fields] OR "magnetic resonance imaging"[MeSH Terms] OR ("magnetic"[All Fields] AND "resonance"[All Fields] AND "imaging"[All Fields]) OR "magnetic resonance imaging"[All Fields] OR ("nuclear"[All Fields] AND "magnetic"[All Fields] AND "resonance"[All Fields])) OR ("diagnostic imaging"[MeSH Subheading] OR ("diagnostic" [All Fields] AND "imaging" [All Fields]) OR "diagnostic imaging"[All Fields] OR "echography"[All Fields] OR "ultrasonography"[MeSH Terms] OR "ultrasonography" [All Fields] OR "echographies" [All Fields]) OR ("image" [All Fields] OR "image s"[All Fields] OR "imaged"[All Fields] OR "imager"[All Fields] OR "imager s"[All Fields] OR "imagers"[All Fields] OR "images"[All Fields] OR "imaging"[All Fields] OR "imaging s"[All Fields] OR "imagings"[All Fields]) OR ("diagnostic imaging"[MeSH Subheading] OR ("diagnostic"[All Fields] AND "imaging"[All Fields]) OR "diagnostic imaging"[All Fields] OR "x ray"[All Fields] OR "x rays"[MeSH Terms] OR "x rays"[All Fields]) OR ("diagnostic imaging"[MeSH Subheading] OR ("diagnostic"[All Fields] AND "imaging"[All Fields]) OR "diagnostic imaging"[All Fields] OR "roentgenography"[All Fields] OR "radiography" [MeSH Terms] OR "radiography" [All Fields]) OR "Skiagraphy"[All Fields] OR ("magnetic resonance imaging"[MeSH Terms] OR

("magnetic"[All Fields] AND "resonance"[All Fields] AND "imaging"[All Fields]) OR "magnetic resonance imaging"[All Fields] OR "mri"[All Fields]))

Study	Yea r	Study design	Sampl e size	Inclusion criteria	Morphological predictors found	Risk of bias	Phase of inquiry	Level of evidence
Catanzano et al ¹	202 0	RCS	43	 Bracing Reached skeletal maturity (Risser 4 or 5) Self-reported compliance of 16 to 18 hrs 	 Pelvic incidence Sacral slope Pelvic tilt Lumbar lordosis 	Moderat e	Exploratory	Prognost ic level III
Cheung and Cheung ²	202 0	RCS	586	 Aged 10 yrs or above, presented with Risser stage 0 to 2 With a major curve of 25° to 40° Had not previously been under treatment Compliance < 16 hrs a day Underarm bracing 	 1) Thoracic curve 2) Pre-brace Cobb angle 3) Flexibility 4) Correction rate 	Low	Confirmatory for flexibility; exploratory for apical ratio	Prognost ic level III
Cheung et al ³	202 0	RCS	586	Underwent underarm TLSO bracing according to the SRS criteria: aged 10 to 14 yrs, major curve magnitude 25° to 40°, Risser Stage 0 to 2, less than one yr post- menarche, and no previous treatment	 1) Supine Cobb angle 2) Flexibility 3) Correction rate 4) Apical ratio 	Low	Exploratory	Prognost ic level III
Courvoisier et al ⁴	201 3	Not specifie d	78	1) AIS with Cobb angle > 4° and < 25°	 Apical axial rotation Apical axial 	Moderat e	Exploratory	Prognost ic level III

 Table i. Summary of study characteristics.

					Intervertebral axial rotation at the upper and lower neutral zone 3) Torsion index			
Dolan et al⁵	201 9	Review of RCT data	115	 Not braced Cobb angle progressing to > 45°, fusion surgery, or reached skeletal maturity (SMS > 7 and/or Risser > 4) during the trial. 	 Curve type (presence of thoracic apex) Initial Cobb angle 	Low	Confirmatory	Prognost ic level II
Guo et al ⁶	201 2	RCS	60	 1) Single thoracic curve with apex at or above T8 (Cobb angle 25° to 40°) 2) Milwaukee brace 3) aged 10 to 15 yrs, Risser sign 0 to 2, either pre- menarche or less than one yr post-menarche 4) compliance ratio ≥ 75 % 	 Pelvic tilt T1 spinopelvic inclination T9 spinopelvic inclination 	High	Exploratory	Prognost ic level III
Karol ⁷	200 1	ACS	112	1) Braced male AIS patients	1) Cobb angle	High	Exploratory	Prognost ic level III
Katz and Durrani ⁸	200	RCS	51	 Be at least 10 yrs of age, Risser sign 0 to 2, curve size between 36° and 45° Boston brace 	 EVA type In-brace correction of Cobb angle in double curves In-brace correction of apical vertebral 	Moderat e	Exploratory	Prognost ic level III

10					rotation (lumbar) 4) In-brace correction of apical vertebral translation (lumbar) 5) LPR angle 6) In brace percentage change RVACx and RVACv			
Kwan et al⁵	202	PCS	46	 Age of 10 to 15 yrs, < 1 year post-menarche, Cobb angle of 25° to 40° Skeletal immaturity (defined as 0 to 2 on the Risser scale or R6 U5 or below on Distal Radius Ulnar Classification) Compliance > 12.9 hrs 	 Supine flexibility Cobb angle reduction velocity at one yr Immediate in-brace correction rate Pre-brace Pre-brace AVR AVR AVR Orrection velocity at one yr Upper intervertebral axial rotation at one yr 	Low	Exploratory	Prognost ic level II

Labrom et al ¹⁰	202 0	PCS	30	 1) Right-sided thoracic major curve 2) Age > 10 yrs. Risser grade ≤ 2, pre-menarche or within 6 mths of menarche 	Greater disparity between apical VB and IVD wedging	High	Exploratory	Prognost ic level II
Lara et al ¹¹	201 7	RCS	223	 African-American Age 10 to 18 yrs old at presentation 	1) Initial Cobb angle 2) Curve type	Moderat e	Exploratory	Prognost ic level III
Lee et al ¹²	201 2	RCS	2,308	1) Untreated AIS 2) Age \geq 10 yrs, Risser sign \leq 2, Cobb angle < 30°	Initial Cobb angle	Low	Confirmatory	Prognost ic level III
Mao et al ¹³	201 6	RCS	95	 Age 10 to 14 yrs, Risser stage 0 to 2, pre-menarche or less than 1 yr post- menarche, Cobb angle 20° to 40°, female sex Boston brace or Milwaukee brace Compliance > 75% 	1) ICR 2) Initial Cobb ARV 3) Initial cobb angle	Moderat e	Confirmatory	Prognost ic level III
Modi et al ¹⁴	200 9	RCS	113	 Thoracic or thoraco- lumbar curve, double curves with major thoracic curve Cobb angle > 40° 	1) RVACx and RVAD at final follow-up 2) Difference between final and pre-brace RVACx	Moderat e	Exploratory	Prognost ic level III
Nault et al ¹⁵	201 4	PCS	133	1) Cobb angle 11° to 40° 2) Risser sign of 0 or 1	1) Angle of plane of maximal curvature	High	Exploratory	Prognost ic level II

					 2) Kyphosis 3) AVR 4) Torsion 5) Slenderness of the spine 			
Ohashi et al ¹⁶	201 8	RCS	56	 AIS with a TL/L curve crossing the CSVL at skeletal maturity Aged ≥ 30 yrs at the time of the survey 	1) AVT 2) L3 tilt 3) Apex score	Moderat e	Exploratory	Prognost ic level III
Ohashi et al ¹⁷	201 9	RCS	51	 1) Right thoracic curve with compensatory lumbar curve not crossing the CSVL 2) Age ≥ 30 yrs at the time of the survey 	1) Lumbar modifier B	Moderat e	Exploratory	Prognost ic level III
Ohrt-Nissen et al ¹⁸	201 6	RCS	63	1) Age > 10 yrs, Cobb angle 25° to 40° and Risser ≤ 2	 Flexibility Nash-Moe rotation Thoracic curve 	Moderat e	Confirmatory for flexibility; exploratory for rotation	Prognost ic level III
Pasha ¹⁹	201 9	RCS	45	1) Apex at or above T10/T11 disc 2) Compliance > 16 hrs	 1) In-brace lordosis 2) In-brace thoracic Cobb angle 3) Pre-brace lordosis + in- brace kyphosis 4) Pre-brace lordosis + sagittal type 2 	Moderat e	Exploratory	Prognost ic level III

					5) Pre-brace thoracic AVR + ribcage type 2			
Shi et al ²⁰	201 6	RCS	200	1) Female 2) Age 10 to 14 yrs, < 1 year post-menarche, Risser 0 to 2, Cobb angle 20° to 40°	1) Cobb angle at brace weaning and initial visit	Moderat e	Exploratory	Prognost ic level III
Sun et al ²¹	201 6	RCS	48	 Female Major thoracic curve, age 9 to 12 yrs, premenarchal with Risser Cobb angle 20° to 40° Milwaukee brace > 90% compliance to the recommended 22 hrs bracing 	 RVAD at brace initiation and each follow-up CRVA at brace initiation and each follow-up 	High	Exploratory	Prognost ic level III
Tan et al ²²	200 9	PCS	186	AIS patients who were skeletally immature at the beginning of the study	Initial Cobb angle	Moderat e	Confirmatory	Prognost ic level II
Thompson et al ²³	201 7	Review of RCT data	168	Risser stage 0 to 2, < 1 yr post-menarche, Cobb angle 25° to 45°	 Curve type (main thoracic vs main lumbar) Change of curve type during bracing 	Low	Confirmatory	Prognost ic level III
Upadhyay et al ²⁴	199 5	RCS	85	Cobb angle 20° to 45°, Risser stage 3 or less	Increase/decrea se of vertebral rotation and cobb angle in brace	Moderat e	Exploratory	Prognost ic level III

					compared to baseline out of brace radiograph			
Ylikoski ²⁵	200 5	RCS	535	 Untreated adolescent idiopathic scoliosis No other diseases apart from a possible spondylolysis and spondylolisthesis 	1) Thoracic kyphosis 2) Cobb angle	High	Exploratory	Prognost ic level III
Zhang et al ²⁶	201 4	RCS	89	 Age > 10 yrs, Cobb angle < 45° Equal lower limbs and no sign of degenerative disorders 	1) Cobb angle of primary curve 2) Nash-Moe rotation	High	Exploratory	Prognost ic level III

AIS, adolescent idiopathic scoliosis; ARV, angle reduction velocity; AVT, apical vertebral translation; CRVA, convex rib vertebral angle; CSVL, central sacral vertical line; EVA, end vertebral angle; ICR, initial correction rate; LPR, lumbar pelvic relationship; PCS, prospective cohort study; RCS, retrospective cohort study; RCT, randomized controlled trials; RVACv, rib vertebra angle on the concave side; RVACx, rib vertebra angle on the convex side; RVAD, rib vertebra angle difference; SMS, skeletal maturity stage; SRS, Scoliosis Research Society; TLSO, thoracolumbosacral orthosis.

Table ii. Quality in Prognostic Studies risk of bias.

Study	Study participation	Study attrition*	Prognostic factor measurement	Outcome measurement	Study confounding	Statistical analysis and reporting	Overall risk of bias
Catanzano et al ¹	Moderate	N/A	Low	Low	Moderate	Low	Moderate
Cheung and Cheung ²	Moderate	N/A	Low	Low	Moderate	Low	Low
Cheung et al ³	Moderate	N/A	Low	Low	Moderate	Low	Low
Courvoisier et al ⁴	Moderate	Moderate	Low	Low	Moderate	Moderate	Moderate
Dolan et al⁵	Low	N/A	Low	Low	Low	Low	Low
Guo et al ⁶	Moderate	N/A	Low	Low	High	High	High

Karol ⁷	Moderate	Moderate	Low	Low	High	Low	High
Katz and Durrani ⁸	Moderate	N/A	Low	Low	High	Low	Moderate
Kwan et al ⁹	Low						
Labrom et al ¹⁰	Moderate	Moderate	Low	Low	High	High	High
Lara et al ¹¹	High	N/A	Moderate	Moderate	Low	Low	Moderate
Lee et al ¹²	Moderate	N/A	Low	Low	Low	Low	Low
Mao et al ¹³	Moderate	N/A	Low	Low	Moderate	Moderate	Moderate
Modi et al ¹⁴	Moderate	N/A	Low	Low	High	High	Moderate
Nault et al ¹⁵	Moderate	High	Low	Low	High	High	High
Ohashi et al ¹⁶	Low	Moderate	Moderate	Moderate	Low	Moderate	Moderate
Ohashi et al ¹⁷	Moderate	Moderate	Low	Low	Moderate	Low	Moderate
Ohrt-Nissen et al ¹⁸	Moderate	N/A	Low	Low	Moderate	Low	Moderate
Pasha ¹⁹	Moderate	N/A	Low	Low	Moderate	Low	Moderate
Shi et al ²⁰	Moderate	N/A	Low	Low	High	Low	Moderate
Sun et al ²¹	Moderate	N/A	Moderate	Low	High	High	High
Tan et al ²²	Low	Moderate	Moderate	Low	Moderate	Low	Moderate
Thompson et al ²³	Low	N/A	Low	Low	Moderate	Low	Low
Upadhyay et al ²⁴	Moderate	N/A	Low	Low	High	Low	Moderate
Ylikoski ²⁵	Moderate	N/A	Moderate	Low	High	High	High
Zhang et al ²⁶	Moderate	N/A	Moderate	Low	High	High	High

*For retrospective studies, study attrition is not applicable (N/A).

Table III. Summary of key findings and statistical methods for predictors with sufficient evic	nt evidence.
--	--------------

Predictors	Population	Study	Key findings	Strength of evidence
Initial Cobb angle	Braced	Zhang et al ²⁶	Initial Cobb angle > 35° predicted progression > 5° (OR 13.691; 95% Cl 6.33 to 29.6; p = 0.001), adjusted for apical vertebral rotation, Risser sign and spinal length growth velocity.	Low
		Karol ⁷	Initial Cobb angle predicted curve progression to 50° or surgery (p < 0.0001) but not progression $\ge 6^{\circ}$.	

		Cheung et al ^{2,3}	Initial Cobb angle was associated with curve progression \geq 5° in univariate analysis (p = 0.01) and multivariable logistic regression (OR = 1.065; 95% Cl 1.01 to 1.123; p = 0.02). Initial Cobb angle did not differentiate the progressed, stable and regressed groups of patients in univariate analysis.	
		Guo et al ⁶	Initial Cobb angle was not significantly associated with progression \geq 6°.	
		Sun et al ²¹	Groups with initial Cobb angle between 20° to 29° and 30° to 40° did not show significant difference in the proportion of patients showing progression \geq 6°.	
		Catanzano et al ¹	Initial Cobb angle was not significantly associated with incidence of surgery (p = 0.457).	
		Katz and Durrani ⁸	Initial Cobb angle was not significantly associated with progression \geq 5° (p = 0.35).	
		Mao et al ¹³	Initial Cobb angle was not significantly associated with progression \geq 6° (p = 0.263).	
		Ohrt-Nissen et al ¹⁸	Initial Cobb angle was not significantly associated with progression $\geq 6^{\circ}$ in univariate analysis (p = 0.396) and multivariable logistic regression (OR 0.99; 95% Cl 0.83 to 1.18) adjusted for menarchal status, age, and flexibility.	
Ur	nbraced	Ylikoski ²⁵	Groups with initial Cobb angle < 15° and 15 to 19° had significantly different progression velocity (p < 0.05).	High
		Tan et al ²²	ROC curve analysis identified 25° as the ideal cut-off for initial Cobb angle. Initial Cobb angle > 25° was significantly associated with progression to 30° in both univariate (OR 24.6; 95% Cl 9.9 to 60.6; p < 0.001) and multivariable logistic regression (OR 27.5; 95% Cl 10.2 to 73.9; p < 0.001).	
		Lara et al ¹¹	Initial Cobb angle was significantly associated with progression > 5° (OR 1.03; 95% Cl 1.01 to 1.04; $p = 0.002$) in a multivariable logistic regression adjusting for age, sex, and curve type.	

		Dolan et al⁵	Initial Cobb angle significantly predicted progression to 45° at maturity with odds ratio 1.28 (95% CI 1.15 to 1.43) adjusted for simplified skeletal maturity score and presence of thoracic apices.	
		Lee et al ¹²	Initial Cobb angle was significantly associated with progression to 30° in univariate survival analysis (hazard ratio = 1.18; 95% Cl 1.16 to 1.21; p < 0.001) but was not significant in multivariable survival analysis (hazard ratio = 0.84; 95% Cl 0.69 to 1.03, p = 0.095). Initial Cobb angle was also shown to interact with age (hazard ratio = 1.03; 95% Cl 1.01 to 1.05; p < 0.001). Classification and regression tree analysis found that risk groups categorized by Cobb angle and a few other factors including age, menarchal status, and height showed hazard ratios significantly different from each other in pairwise comparison (p < 0.01). Patients with Cobb angle > 25.8° had a hazard ratio of 8.8 compared to patients with Cobb angle < 18.4°.	
		Nault et al ¹⁵	Neither 2D nor 3D Cobb angle was significantly associated with progression $\ge 6^{\circ}$ (p = 0.2 for both 2D and 3D Cobb angle).	
	Beyond maturity	Shi et al ²⁰	Both Cobb angle at brace initiation and Cobb angle at brace weaning were significantly associated with curve progression to 45° two years after skeletal maturity ($p < 0.05$ for both predictors). A larger Cobb angle at skeletal maturity was also predictive of curve progression of more than 5° after skeletal maturity ($p = 0.033$).	Inconclusive
Curve type (thoracic curves)	Braced	Thompson et al ²³	mLenke curve types did not significantly predict progression to surgery (50°) ($p = 0.0866$) but main thoracic curve did ($p = 0.0277$), even after adjusting for brace compliance ($p = 0.0239$). Thoracic curves did not predict progression when	Low

		stratified by Risser stage ($p = 0.231$ for Risser 0 group and $p = 0.542$ for Risser 1 and 2 group). A change in curve type during bracing was significantly associated with a lower rate of surgery or progression to 50° ($p = 0.0383$).	
	Ohrt-Nissen et al ¹⁸	Thoracic curves were significantly associated with progression $\geq 6^{\circ}$ in univariate linear regression (coefficient = 13.66; 95% Cl 4.2 to 22.5; p = 0.005). The curve type distributions (categorized into thoracic, thoracolumbar, lumbar, and double major curves) between the progressed and stable groups were significantly different (p = 0.032).	
	Cheung and Cheung ²	Thoracic curves were significantly associated with progression > 5° in both univariate (OR 3.32; 95% CI 2.35 to 4.69; $p < 0.001$) and multivariable logistic regression (OR 1.635; 95% CI 1.076 to 2.483; $p = 0.022$).	
	Katz and Durrani ⁸	Curve type did not predict progression \geq 5° (p = 0.615)	
	Zhang et al ²⁶	Curve type was not selected as a predictor for progression > 5° in the multivariable logistic regression.	
	Kwan et al ⁹	Thoracic curves were not associated with progression > 5° in both univariate analysis (p = 0.615) and multivariable logistic regression (OR 1.4; 95% Cl 0.39 to 5.027; p = 0.606).	
Unbrac	ed Dolan et al⁵	The presence of one or more thoracic apices predicted curve progression to 45° at skeletal maturity in a multivariable logistic regression (OR 4.09; 95% Cl 0.88 to 18.96; p = 0.07).	Moderate
	Lara et al ¹¹	Curve type categorized into single thoracic, single lumbar, double thoracic, double lumbar, and thoracolumbar was not predictive of progression to 50° or incidence of surgery (p < 0.05 for all) in multivariable logistic regression adjusting for age, sex, and curve magnitude.	
Beyond maturit	I Ohashi et al ¹⁶ Y	A more cranially located curve apex predicted progression 25 years after skeletal maturity ($p = 0.025$) in univariate analysis.	Inconclusive

Flexibility	Braced	Cheung et al ^{2,3}	Higher flexibility predicted lower risk of curve progression \geq 5° in both univariate (OR 0.949; 95% Cl 0.94 to 0.96; p < 0.001) and multivariable logistic regression (OR 0.958; 95% Cl 0.943 to 0.974; p < 0.001), adjusted for curve type, Cobb angle, flexibility, etc.	High
		Kwan et al ⁹	Supine flexibility was associated with the magnitude of curve progression in a univariate linear regression ($p = 0.032$) and statistical significance remained when fitted in a multivariable logistic regression (OR 0.962; 95% Cl 0.929 to 0.999; $p = 0.042$).	
		Ohrt-Nissen et al ¹⁸	Flexibility was different between progressed and stable patients in both univariate analysis (p < 0.001) and multivariable logistic regression (OR 0.95; 95% CI 0.90 to 0.98), adjusted for Cobb angle, age and menarchal status.	
In-brace correction	Braced	Cheung et al ^{2,3}	In-brace correction was significantly associated with curve progression \geq 5° in both univariate (OR 0.949; 95% Cl 0.94 to 0.96; p < 0.001) and multivariable logistic regressions (OR 0.979; 95% Cl 0.966 to 0.991; p = 0.001).	Moderate
		Kwan et al ⁹	In-brace correction was significantly associated with curve progression \geq 5° in both univariate (p = 0.009) and multivariable logistic regressions (OR 0.966; 95% Cl 0.938 to 0.994, p = 0.019).	
		Katz and Durrani ⁸	In-brace correction was predictive of progression > 5° in double curves in univariate analysis (p = 0.02).	
		Karol ⁷	In-brace correction was not associated with progression $\ge 6^{\circ}$ in univariate analysis (p < 0.05).	
		Ohrt-Nissen et al ¹⁸	In-brace correction was significantly different between progression and stable groups by the 6° margin (p = 0.009).	
		Pasha ¹⁹	In-brace thoracic Cobb angle was predictive of curve progression in a multivariable analysis by LASSO regression ($p = 0.025$).	

Mao et al ¹³	Correction rate, defined as correction between the first two visits, and initial Cobb angle reduction velocity, defined as Cobb angle reduction velocity between the first two visits, were significantly predictive of brace outcome. Initial Cobb angle reduction velocity was found to be superior to	
	correction rate in the prediction of outcome.	

CI, confidence interval; LASSO, least absolute shrinkage and selection operator; OR, odds ratio; ROC, receiver operating characteristic.

Predictors	Population	Study	Key findings	Strength of evidence
Rib morphology	Braced	Sun et al ²¹	Rib vertebral angle difference (RVAD) > 20° and rib vertebral angle on the convex side (RVACx) < 68° predicted curve progression \geq 6°. RVAD and RVACx also differed significantly between patients from the stable and progressed groups at follow-ups at 0, 6, 12, 24, 36 months, and at final follow-up in a cohort where initial Cobb angle did not significantly predict progression.	Very low
		Katz and Durrani ⁸	The in-brace correction of RVACx ($p = 0.005$) and rib vertebra angle on the concave side (RVACv) ($p = 0.005$) were significantly different between the progressed and stable groups by the 5° margin.	
		Modi et al ¹⁴	RVAD ($p = 0.269$). RVACx ($p = 0.492$) and RVACv ($p = 0.693$) were not significantly different between progressed and stable groups but final RVAD ($p = 0.0079$) and RVACx ($p = 0.0002$) were significantly different.	
		Pasha ¹⁹	A combination of high thoracic apical vertebral rotation and an RVACx > 60° was significantly associated with curve progression by multivariable LASSO regression (p = 0.04).	
AVR	Braced	Kwan et al ⁹	Pre-brace AVR was also significantly predictive of progression $\geq 5^{\circ}$ in multivariable logistic regression (OR 1.063; 95% CI 1.000 to 1.131; p = 0.049). AVR correction velocity in 1 year was predictive of progression $\geq 5^{\circ}$ in multivariable logistic regression (OR 1.19; 95% CI 1.021 to 1.38; p = 0.026).	Low
		Zhang et al ²⁶	Patients with Nash-Moe rotation beyond grade III predicted progression > 5° (OR 16.134; 95% CI 6.31 to 41.2; p = 0.003) in a multivariable logistic regression.	

Table iv. Summary of key findings and statistical methods for predictors with less sufficient evidence.

		Ohrt-Nissen et al ¹⁸	Nash-Moe rotation predicted progression \geq 6° in univariate analysis (p = 0.012)	
		Upadhyay et al ²⁴	A reduction of both the Perdriolle rotation and Cobb angle after application of brace predicted non-progression and an increase in both after application of brace predicts curve progression \geq 5° (p < 0.05).	
	Unbraced	Courvoisier et al⁴	AVR was predictive of curve progression in a stepwise logistic regression (OR 1.39; p = 0.006). K-means cluster analysis using AVR and three other predictors as parameters yielded clusters with significantly different proportions of progressed patients, independent of curve type.	Inconclusive
		Nault et al ¹⁵	Apical intervertebral rotation (the axial rotation of the apical vertebral relative to its adjacent vertebrae) was predictive of curve progression $\geq 6^{\circ}$ in univariate analysis (p = 0.006)	
PT	Braced	Catanzano et al ¹	Greater PT was significantly associated with lower incidence of surgery in univariate analysis ($p = 0.003$). The ideal cut-off for PT is 8.5° by ROC curve analysis and PT greater than 8.5° was significantly associated with lower incidence of surgery (OR 0.7; 95% Cl 0.54 to 0.91; $p = 0.009$), adjusted for Cobb angle and Risser stage.	Very low
		Guo et al ⁶	Greater PT was significantly associated with lower risk of progression $\geq 6^{\circ}$ in univariate analysis (p < 0.01) and in multivariable regression analysis adjusted for Cobb angle and Risser stage (p < 0.01).	

AVR, apical vertebral rotation; CI, confidence interval; LASSO, least absolute shrinkage and selection operator; OR, odds ratio; PT, pelvic tilt; ROC, receiver operating characteristic; RVACv; rib vertebra angle on the concave side; RVACx, rib vertebra angle on the convex side; RVAD, rib vertebra angle difference.

Predictors	Population	Study	Key findings	Strength of evidence
Torsion	Braced	Kwan et al ⁹	Torsion at one year of bracing was not significantly correlated with curve progression \geq 5° in a multivariable analysis (OR = 0.592; 95% Cl 0.331 to 1.059; p = 0.077).	Inconclusi ve
	Unbraced	Courvoisier et al ⁴	Torsion was predictive of curve progression in a stepwise logistic regression (OR = 1.43; $p = 0.05$). K-means cluster analysis using torsion and three other predictors as parameters yielded clusters with significantly different proportions of progressed patients, independent of curve type.	
		Nault et al ¹⁵	Torsion was associated with curve progression $\ge 6^{\circ}$ in univariate analysis (p = 0.02).	
Vertebral slenderness	Mixed braced and unbraced	Nault et al ¹⁵	Greater T6 width and depth slenderness, T12 depth slenderness, L4 width and depth slenderness and T1-T5 depth and width slenderness were all associated with lower risk of progression \geq 6° (p < 0.05 for all predictors) in univariate analysis.	Inconclusi ve
Angle of plane of maximal curvature	Mixed braced and unbraced	Nault et al ¹⁵	Angle of plane of maximal curvature was associated with progression $\geq 6^{\circ}$ (p = 0.001).	Inconclusi ve
Intervertebral rotation at the upper and lower junctions of the curve	Braced	Kwan et al ⁹	Upper IAR at one year of bracing was associated with progression \geq 5° (OR = 1.22; 95% Cl 1.01 to 1.47; p = 0.044) in a multivariable logistic regression, and lower IAR were not found to be significant in multivariable analysis (OR = 0.87; 95% Cl 0.71 to 1.067; p = 0.183).	Inconclusi ve
	Unbraced	Courvoisier et al ⁴	Intervertebral axial rotation at the upper and lower junctions of the curve was predictive of curve progression in a stepwise logistic	

Table v. Summary of key findings and statistical methods for predictors with inconclusive evidence.

			regression (OR = 1.35; $p = 0.04$ for intervertebral rotation at the upper end; OR = 0.7; $p = 0.03$ for intervertebral rotation at the lower end). K- means cluster analysis using torsion and two other predictors as parameters yielded clusters with significantly different proportions of progressed patients, independent of curve type.	
		Nault et al ¹⁵	Intervertebral rotation at the upper and lower junctions of the curve was not significantly associated with progression $\ge 6^{\circ}$.	
Pelvic incidence	Braced	Catanzano et al ¹	Greater pelvic incidence was significantly associated with lower incidence of surgery in univariate analysis ($p < 0.001$). The ideal cut-off for pelvic incidence was 47.2° by ROC curve analysis and PI greater than 47.2° was significantly associated with lower incidence of surgery (OR = 0.68; 95% CI 0.55 to 0.85; $p < 0.001$), adjusted for Cobb angle and Risser stage.	Inconclusi ve
		Guo et al ⁶	Pelvic incidence was not significantly associated with progression $\ge 6^{\circ}$ in univariate analysis (p > 0.05).	
Sacral slope	Braced	Catanzano et al ¹	Greater sacral slope was significantly associated with lower incidence of surgery in univariate analysis ($p = 0.003$). The ideal cut-off for sacral slope is 43° by ROC curve analysis and SS greater than 43° was significantly associated with lower incidence of surgery (OR = 0.8; 95% Cl 0.68 to 0.94; $p = 0.006$), adjusted for Cobb angle and Risser stage.	Inconclusi ve
		Guo et al ⁶	Sacral slope was not significantly associated with progression $\ge 6^{\circ}$ in univariate analysis (p > 0.05).	
Thoracic kyphosis	Braced	Catanzano et al ¹	Thoracic kyphosis was not significantly associated with incidence of surgery in univariate analysis ($p = 0.466$).	Inconclusi ve
	Unbraced	Ylikoski ²⁵	Patients with greater thoracic kyphosis had a lower yearly curve progression rate for both major and minor curves in univariate analysis (p < 0.05).	Inconclusi ve
		Nault et al ¹⁵	Thoracic kyphosis was predictive of curve progression \geq 6° (p = 0.02) in univariate analysis.	

Lumbar lordosis	Braced	Catanzano et al ¹	Lumbar lordosis was significantly associated with incidence of surgery in univariate analysis ($p = 0.034$).	Inconclusi ve
		Guo et al ⁶	Lumbar lordosis was not significantly associated with incidence of surgery in univariate analysis ($p > 0.05$).	
		Pasha ¹⁹	In-brace lordosis ($p = 0.027$), pre-brace lordosis together with in-brace kyphosis ($p = 0.046$) and pre-brace lordosis with RVACx > 60° ($p = 0.031$) were found to be significant predictors of curve progression in LASSO regression.	
		Nault et al ¹⁵	Lumbar lordosis was not significantly associated with progression > 5° in a mixed cohort of braced and unbraced patients.	
T1 and T9 spinopelvic inclination	Braced	Catanzano et al ¹	T1 ($p = 0.631$) and T9 spinopelvic inclinations ($p = 0.722$) were not predictive of incidence of surgery in univariate analysis.	Inconclusi ve
		Guo et al ⁶	T1 and T9 spinopelvic inclinations were significantly associated with lower risk of progression $\ge 6^{\circ}$ in univariate analysis (p < 0.05 for both predictors) and in multivariable regression analysis adjusted for Cobb angle and Risser stage (p < 0.05 for both predictors).	
Wedging	Braced	Cheung et al ^{2,3}	Pre-brace apical ratio did not predict curve progression $\geq 5^{\circ}$ (OR = 0.541; 95% Cl 0.05 to 5.77; p = 0.611) in univariate analysis. An increase in apical ratio during bracing predicted higher rate of progression (OR = 1.24; 95% Cl 1.19 to 1.31; p < 0.01) and lower rate of regression (OR = 0.84; 95% Cl 0.80 to 0.87; p < 0.01) in multivariable logistic regression models.	Inconclusi ve
	Unbraced	Labrom et al ¹⁰	Greater disparity between vertebral body wedging and intervertebral disc wedging predicted curve progression ($p = 0.03$) in univariate analysis.	Inconclusi ve

		Nault et al ¹⁵	Neither 3D apical vertebral wedging nor 3D apical disc wedging predicted curve progression ($p > 0.05$).	
Apical vertebral translation	Braced and unbraced	Katz and Durrani ⁸	In-brace correction of apical vertebral translation in lumbar curves of double curves was significantly associated with curve progression (p = 0.05) in univariate analysis.	Inconclusi ve
	Beyond maturity	Ohashi et al ¹⁶	Greater apical vertebral translation predicted greater progression 25 years after skeletal maturity in univariate analysis (p = 0.016)	Inconclusi ve
Lumbar-pelvic relation	Braced and unbraced	Katz and Durrani ⁸	Lumbopelvic angle in patients with a double curve where the thoracic curve exceeded 36° was associated with curve progression (p = 0.006).	Inconclusi ve
EVA type	Braced and unbraced	Katz and Durrani ⁸	EVA types were significantly associated with curve progression in univariate analysis (p = 0.04)	Inconclusi ve
L3 tilt	Beyond maturity	Ohashi et al ¹⁶	L3 tilt predicted progression 25 years after skeletal maturity in univariate analysis ($p = 0.02$)	Inconclusi ve
Lumbar modifier B	Beyond maturity	Ohashi et al ¹⁷	Lumbar modifier B in the Lenke classification system at skeletal maturity predicted greater curve progression of compensatory lumbar curves 25 years after maturity.	Inconclusi ve

CI, confidence interval; EVA, end-vertebra angle; IAR, intervertebral axial rotation; LASSO, least absolute shrinkage and selection operator; OR, odds ratio; ROC, receiver operating characteristic; RVACx, rib vertebra angle on the convex side; SS, sacral slope.

References

1. Catanzano AA, Esposito VR, Dial BL, et al. Staying ahead of the curve: the use of spinopelvic parameters to predict curve progression and bracing success in adolescent idiopathic scoliosis. *Spine Deform*. 2020;8(6):1213–1222.

2. Cheung JPY, Cheung PWH. Supine flexibility predicts curve progression for patients with adolescent idiopathic scoliosis undergoing underarm bracing. *Bone Joint J.* 2020;102-B(2):254–260.

3. Cheung JPY, Cheung PWH, Yeng WC, Chan LCK. Does curve regression occur during underarm bracing in patients with adolescent idiopathic scoliosis? *Clin Orthop Relat Res.* 2020;478(2):334–345.

4. Courvoisier A, Drevelle X, Dubousset J, Skalli W. Transverse plane 3D analysis of mild scoliosis. *Eur Spine J*. 2013;22(11):2427–2432.

5. Dolan LA, Weinstein SL, Abel MF, et al. Bracing in adolescent idiopathic scoliosis trial (BrAIST): development and validation of a prognostic model in untreated adolescent idiopathic scoliosis using the simplified skeletal maturity system. *Spine Deform*. 2019;7(6):890–898.

6. Guo J, Liu Z, Lv F, et al. Pelvic tilt and trunk inclination: new predictive factors in curve progression during the Milwaukee bracing for adolescent idiopathic scoliosis. *Eur Spine J*. 2012;21(10):2050–2058.

7. Karol LA. Effectiveness of bracing in male patients with idiopathic scoliosis. *Spine*. 2001;26(18):2001–2005.

8. Katz DE, Durrani AA. Factors that influence outcome in bracing large curves in patients with adolescent idiopathic scoliosis. *Spine*. 2001;26(21):2354–2361.

9. Kwan KYH, Cheung AKP, Koh HY, Cheung KMC. Brace effectiveness is related to 3-dimensional plane parameters in patients with adolescent idiopathic scoliosis. *J Bone Joint Surg Am*. 2021;103-A(1):37–43.

10. Labrom FR, lzatt MT, Contractor P, et al. Sequential MRI reveals vertebral body wedging significantly contributes to coronal plane deformity progression in adolescent idiopathic scoliosis during growth. *Spine Deform*. 2020;8(5):901–910.

11. Lara T, Astur N, Jones TL, et al. The risk of curve progression and surgery in African Americans with adolescent idiopathic scoliosis. *Spine Deform*. 2017;5(4):250–254.

12. Lee CF, Fong DYT, Cheung KMC, et al. A new risk classification rule for curve progression in adolescent idiopathic scoliosis. *Spine* J. 2012;12(11):989–995.

13. Mao S, Shi B, Xu L, et al. Initial Cobb angle reduction velocity following bracing as a new predictor for curve progression in adolescent idiopathic scoliosis. *Eur Spine J.* 2016;25(2):500–505.

14. Modi HN, Suh SW, Song HR, Yang JH, Ting C, Hazra S. Drooping of apical convex rib-vertebral angle in adolescent idiopathic scoliosis of more than 40 degrees: a prognostic factor for progression. *J Spinal Disord Tech*. 2009;22(5):367–371.

15. Nault M-L, Mac-Thiong J-M, Roy-Beaudry M, et al. Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. *Spine*. 2014;39(10):E601-6.

16. **Ohashi M, Watanabe K, Hirano T, et al.** Predicting factors at skeletal maturity for curve progression and low back pain in adult patients treated nonoperatively for adolescent idiopathic scoliosis with thoracolumbar/lumbar curves. *Spine*. 2018;43(23):E1403–E1411.

17. **Ohashi M, Watanabe K, Hirano T, et al.** The natural course of compensatory lumbar curves in nonoperated patients with thoracic adolescent idiopathic scoliosis. *Spine*. 2019;44(2):E89–E98.

18. Ohrt-Nissen S, Hallager DW, Gehrchen M, Dahl B. Flexibility predicts curve progression in providence nighttime bracing of patients with adolescent idiopathic scoliosis. *Spine*. 2016;41(22):1724–1730.

19. **Pasha S.** 3D spinal and rib cage predictors of brace effectiveness in adolescent idiopathic scoliosis. *BMC Musculoskelet Disord*. 2019;20(1):384.

20. Shi B, Guo J, Mao S, et al. Curve progression in adolescent idiopathic scoliosis with a minimum of 2 years' follow-up after completed brace weaning with reference to the SRS standardized criteria. *Spine Deform*. 2016;4(3):200–205.

21. Sun X, Ding Q, Sha S, et al. Rib-vertebral angle measurements predict brace treatment outcome in Risser grade 0 and premenarchal girls with adolescent idiopathic scoliosis. *Eur Spine J.* 2016;25(10):3088–3094.

22. Tan KJ, Moe MM, Vaithinathan R, Wong HK. Curve progression in idiopathic scoliosis: follow-up study to skeletal maturity. *Spine*. 2009;34(7):697–700.

23. **Thompson RM, Hubbard EW, Jo CH, Virostek D, Karol LA.** Brace success is related to curve type in patients with adolescent idiopathic scoliosis. *J Bone Joint Surg Am*. 2017;99-A(11):923–928

24. Upadhyay SS, Nelson IW, Ho EK, Hsu LC, Leong JC. New prognostic factors to predict the final outcome of brace treatment in adolescent idiopathic scoliosis. *Spine*. 1995;20(5):537–545.

25. Ylikoski M. Growth and progression of adolescent idiopathic scoliosis in girls. *J Pediatr Orthop B*. 2005;14(5):320–324.

26. **Zhang Y, Yang Y, Dang X, et al.** Factors relating to curve progression in female patients with adolescent idiopathic scoliosis treated with a brace. *Eur Spine J*. 2015;24(2):244–248.